生物化学第三版课后习题详细解答.docx

上传人:b****8 文档编号:12107501 上传时间:2023-06-04 格式:DOCX 页数:39 大小:63.98KB
下载 相关 举报
生物化学第三版课后习题详细解答.docx_第1页
第1页 / 共39页
生物化学第三版课后习题详细解答.docx_第2页
第2页 / 共39页
生物化学第三版课后习题详细解答.docx_第3页
第3页 / 共39页
生物化学第三版课后习题详细解答.docx_第4页
第4页 / 共39页
生物化学第三版课后习题详细解答.docx_第5页
第5页 / 共39页
生物化学第三版课后习题详细解答.docx_第6页
第6页 / 共39页
生物化学第三版课后习题详细解答.docx_第7页
第7页 / 共39页
生物化学第三版课后习题详细解答.docx_第8页
第8页 / 共39页
生物化学第三版课后习题详细解答.docx_第9页
第9页 / 共39页
生物化学第三版课后习题详细解答.docx_第10页
第10页 / 共39页
生物化学第三版课后习题详细解答.docx_第11页
第11页 / 共39页
生物化学第三版课后习题详细解答.docx_第12页
第12页 / 共39页
生物化学第三版课后习题详细解答.docx_第13页
第13页 / 共39页
生物化学第三版课后习题详细解答.docx_第14页
第14页 / 共39页
生物化学第三版课后习题详细解答.docx_第15页
第15页 / 共39页
生物化学第三版课后习题详细解答.docx_第16页
第16页 / 共39页
生物化学第三版课后习题详细解答.docx_第17页
第17页 / 共39页
生物化学第三版课后习题详细解答.docx_第18页
第18页 / 共39页
生物化学第三版课后习题详细解答.docx_第19页
第19页 / 共39页
生物化学第三版课后习题详细解答.docx_第20页
第20页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

生物化学第三版课后习题详细解答.docx

《生物化学第三版课后习题详细解答.docx》由会员分享,可在线阅读,更多相关《生物化学第三版课后习题详细解答.docx(39页珍藏版)》请在冰点文库上搜索。

生物化学第三版课后习题详细解答.docx

生物化学第三版课后习题详细解答

生物化学(第三版)课后习题详细解答

第三章氨基酸

习题

1.写出下列氨基酸的单字母和三字母的缩写符号:

精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。

[见表3-1]

表3-1氨基酸的简写符号

名称

三字母符号

单字母符号

名称

三字母符号

单字母符号

丙氨酸(alanine)

Ala

A

亮氨酸(leucine)

Leu

L

精氨酸(arginine)

Arg

R

赖氨酸(lysine)

Lys

K

天冬酰氨(asparagines)

Asn

N

甲硫氨酸(蛋氨酸)(methionine)

Met

M

天冬氨酸(asparticacid)

Asp

D

苯丙氨酸(phenylalanine)

Phe

F

Asn和/或Asp

Asx

B

半胱氨酸(cysteine)

Cys

C

脯氨酸(praline)

Pro

P

谷氨酰氨(glutamine)

Gln

Q

丝氨酸(serine)

Ser

S

谷氨酸(glutamicacid)

Glu

E

苏氨酸(threonine)

Thr

T

Gln和/或Glu

Gls

Z

甘氨酸(glycine)

Gly

G

色氨酸(tryptophan)

Trp

W

组氨酸(histidine)

His

H

酪氨酸(tyrosine)

Tyr

Y

异亮氨酸(isoleucine)

Ile

I

缬氨酸(valine)

Val

V

2、计算赖氨酸的εα-NH3+20%被解离时的溶液PH。

[9.9]

解:

pH=pKa+lg20%pKa=10.53(见表3-3,P133)

pH=10.53+lg20%=9.83

3、计算谷氨酸的γ-COOH三分之二被解离时的溶液pH。

[4.6]

解:

pH=pKa+lg2/3%pKa=4.25

pH=4.25+0.176=4.426

4、计算下列物质0.3mol/L溶液的pH:

(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。

[(a)约1.46,(b)约11.5,(c)约6.05]

5、根据表3-3中氨基酸的pKa值,计算下列氨基酸的pI值:

丙氨酸、半胱氨酸、谷氨酸和精氨酸。

[pI:

6.02;5.02;3.22;10.76]

解:

pI=1/2(pKa1+pKa2)

pI(Ala)=1/2(2.34+9.69)=6.02

pI(Cys)=1/2(1.71+10.78)=5.02

pI(Glu)=1/2(2.19+4.25)=3.22

pI(Ala)=1/2(9.04+12.48)=10.76

6、向1L1mol/L的处于等电点的甘氨酸溶液加入0.3molHCl,问所得溶液的pH是多少?

如果加入0.3molNaOH以代替HCl时,pH将是多少?

[pH:

2.71;9.23]

7、将丙氨酸溶液(400ml)调节到pH8.0,然后向该溶液中加入过量的甲醛,当所得溶液用碱反滴定至Ph8.0时,消耗0.2mol/LNaOH溶液250ml。

问起始溶液中丙氨酸的含量为多少克?

[4.45g]

8、计算0.25mol/L的组氨酸溶液在pH6.4时各种离子形式的浓度(mol/L)。

[His2+为1.78×10-4,His+为0.071,His0为2.8×10-4]

9、说明用含一个结晶水的固体组氨酸盐酸盐(相对分子质量=209.6;咪唑基pKa=6.0)和1mol/LKOH配制1LpH6.5的0.2mol/L组氨酸盐缓冲液的方法[取组氨酸盐酸盐41.92g(0.2mol),加入352ml1mol/LKOH,用水稀释至1L]

10、为什么氨基酸的茚三酮反映液能用测压法定量氨基酸?

解:

茚三酮在弱酸性溶液中与α-氨基酸共热,引起氨基酸氧化脱氨脱羧反映,(其反应化学式见P139),其中,定量释放的CO2可用测压法测量,从而计算出参加反应的氨基酸量。

11、L-亮氨酸溶液(3.0g/50ml6mol/LHCl)在20cm旋光管中测得的旋光度为+1.81º。

计算L-亮氨酸在6mol/LHCl中的比旋([a])。

[[a]=+15.1º]

12、标出异亮氨酸的4个光学异构体的(R,S)构型名称。

[参考图3-15]

13、甘氨酸在溶剂A中的溶解度为在溶剂B中的4倍,苯丙氨酸在溶剂A中的溶解度为溶剂B中的两倍。

利用在溶剂A和B之间的逆流分溶方法将甘氨酸和苯丙氨酸分开。

在起始溶液中甘氨酸含量为100mg,苯丙氨酸为81mg,试回答下列问题:

(1)利用由4个分溶管组成的逆流分溶系统时,甘氨酸和苯丙氨酸各在哪一号分溶管中含量最高?

(2)在这样的管中每种氨基酸各为多少毫克?

[

(1)第4管和第3管;

(2)51.2mgGly+24mgPhe和38.4mgGly+36mgPhe]

解:

根据逆流分溶原理,可得:

对于Gly:

Kd=CA/CB=4=q(动相)/p(静相)p+q=1=(1/5+4/5)

4个分溶管分溶3次:

(1/5+4/5)3=1/125+2/125+48/125+64/125

对于Phe:

Kd=CA/CB=2=q(动相)/p(静相)p+q=1=(1/3+2/3)

4个分溶管分溶3次:

(1/3+2/3)3=1/27+6/27+12/27+8/27

故利用4个分溶管组成的分溶系统中,甘氨酸和苯丙氨酸各在4管和第3管中含量最高,其中:

第4管:

Gly:

64/125×100=51.2mgPhe:

8/27×81=24mg

第3管:

Gly:

48/125×100=38.4mgPhe:

12/27×81=36mg

14、指出在正丁醇:

醋酸:

水的系统中进行纸层析时,下列混合物中氨基酸的相对迁移率(假定水相的pH为4.5):

(1)Ile,Lys;

(2)Phe,Ser(3)Ala,Val,Leu;(4)Pro,Val(5)Glu,Asp;(6)Tyr,Ala,Ser,His.

[Ile>lys;Phe,>Ser;Leu>Val>Ala,;Val>Pro;Glu>Asp;Tyr>Ala>Ser≌His]

解:

根据P151图3-25可得结果。

15.将含有天冬氨酸(pI=2.98)、甘氨酸(pI=5.97)、亮氨酸(pI=6.53)和赖氨酸(pI=5.98)的柠檬酸缓冲液,加到预先同样缓冲液平衡过的强阳离交换树脂中,随后用爱缓冲液析脱此柱,并分别收集洗出液,这5种氨基酸将按什么次序洗脱下来?

[Asp,Thr,Gly,Leu,Lys]

解:

在pH3左右,氨基酸与阳离子交换树脂之间的静电吸引的大小次序是减刑氨基酸(A2+)>中性氨基酸(A+)>酸性氨基酸(A0)。

因此氨基酸的洗出顺序大体上是酸性氨基酸、中性氨基酸,最后是碱性氨基酸,由于氨基酸和树脂之间还存在疏水相互作用,所以其洗脱顺序为:

Asp,Thr,Gly,Leu,Lys。

第四章蛋白质的共价结构

习题

1.如果一个相对分子质量为12000的蛋白质,含10种氨基酸,并假设每种氨基酸在该蛋白质分子中的数目相等,问这种蛋白质有多少种可能的排列顺序?

[10100]

解:

1012000/120=10100

2、有一个A肽,经酸解分析得知为Lys、His、Asp、Glu2、Ala以及Val、Tyr忽然两个NH3分子组成。

当A肽与FDNB试剂反应后得DNP-Asp;当用羧肽酶处理后得游离缬氨酸。

如果我们在实验中将A肽用胰蛋白酶降解时,得到两种肽,其中一种(Lys、Asp、Glu、Ala、Tyr)在pH6.4时,净电荷为零,另一种(His、Glu以及Val)可给除DNP-His,在pH6.4时,带正电荷。

此外,A肽用糜蛋白酶降解时,也得到两种肽,其中一种(Asp、Ala、Tyr)在pH6.4时全中性,另一种(Lys、His、Glu2以及Val)在pH6.4时带正电荷。

问A肽的氨基酸序列如何?

[Asn-Ala-Tyr-Glu-Lys-His-Gln-Val]

解:

1、N-末端分析:

FDNB法得:

Asp-;

2、C-末端分析:

羧肽酶法得:

-Val;

3、胰蛋白酶只断裂赖氨酸或精氨酸残基的羧基形成的肽键,得到的是以Arg和Lys为C-末端残基的肽断。

酸水解使Asn→Asp+NH4+,由已知条件(Lys、Asp、Glu、Ala、Tyr)可得:

Asn-()-()-()-Lys-()-()-Val;

4、FDNB法分析N-末端得DNP-His,酸水解使Gln→Glu+NH4+由已知条件(His、Glu、Val)可得:

Asn-()-()-()-Lys-His-Gln-Val;

5、糜蛋白酶断裂Phe、Trp和Tyr等疏水氨基酸残基的羧基端肽键。

由题,得到的一条肽(Asp、Ala、Tyr)结合(3)、(4)可得该肽的氨基酸序列为:

Asn-Ala-Tyr-Glu-Lys-His-Gln-Val

3、某多肽的氨基酸序列如下:

Glu-Val-Lys-Asn-Cys-Phe-Arg-Trp-Asp-Leu-Gly-Ser-Leu-Glu-Ala-Thr-Cys-Arg-His-Met-Asp-Gln-Cys-Tyr-Pro-Gly-Glu_Glu-Lys。

(1)如用胰蛋白酶处理,此多肽将产生几个肽?

并解释原因(假设没有二硫键存在);

(2)在pH7.5时,此多肽的净电荷是多少单位?

说明理由(假设pKa值:

α-COOH4.0;α-NH3+6.0;Glu和Asp侧链基4.0;Lys和Arg侧链基11.0;His侧链基7.5;Cys侧链基9.0;Tyr侧链基11.0);(3)如何判断此多肽是否含有二硫键?

假如有二硫键存在,请设计实验确定5,17和23位上的Cys哪两个参与形成?

[

(1)4个肽;

(2)-2.5单位;(3)如果多肽中无二硫键存在,经胰蛋白酶水解后应得4个肽段;如果存在一个二硫键应得3个肽段并且个肽段所带电荷不同,因此可用离子交换层析、电泳等方法将肽段分开,鉴定出含二硫键的肽段,测定其氨基酸顺序,便可确定二硫键的位置]

4、今有一个七肽,经分析它的氨基酸组成是:

Lys、Pro、Arg、Phe、Ala、Tyr和Ser。

此肽未经糜蛋白酶处理时,与FDNB反应不产生α-DNP-氨基酸。

经糜蛋白酶作用后,此肽断裂城两个肽段,其氨基酸组成分别为Ala、Tyr、Ser和Pro、Phe、Lys、Arg。

这两个肽段分别与FDNB反应,可分别产生DNP-Ser和DNP-Lys。

此肽与胰蛋白酶反应能生成两个肽段,它们的氨基酸组成分别是Arg、Pro和Phe、Tyr、Lys、Ser、Ala。

试问此七肽的一级结构怎样?

[它是一个环肽,序列为:

-Phe-Ser-Ala-Tyr-Lys-Pro-Arg-]

解:

(1)此肽未经糜蛋白酶处理时,与FDNB反应不产生α-DNP-氨基酸,说明此肽不含游离末端NH2,即此肽为一环肽;

(2)糜蛋白酶断裂Phe、Trp和Tyr等疏水氨基酸残基的羧基端肽键,由已知两肽段氨基酸组成(Ala、Tyr、Ser和Pro、Phe、Lys、Arg)可得:

-()-()-Tyr-和-()-()-()-Phe-;

(3)由

(2)得的两肽段分别与FDNB反应,分别产生DNP-Ser和DNP-Lys可知该两肽段的N-末端分别为-Ser-和-Lys-,结合

(2)可得:

-Ser-Ala-Tyr-和-Lys-()-()-Phe-;

(4)胰蛋白酶专一断裂Arg或Lys残基的羧基参与形成的肽键,由题生成的两肽段氨基酸组成(Arg、Pro和Phe、Tyr、Lys、Ser、Ala)可得:

-Pro-Arg-和-()-()-()-()-Lys;

综合

(2)、(3)、(4)可得此肽一级结构为:

-Lys-Pro-Arg-Phe-Ser-Ala-Tyr-

5、三肽Lys-Lys-Lys的pI值必定大于它的任何一个个别基团的pKa值,这种说法是否正确?

为什么?

[正确,因为此三肽处于等电点时,七解离集团所处的状态是C-末端COO-(pKa=3.0),N末端NH2(pKa≌8.0),3个侧链3(1/3ε-NH3+)(pKa=10.53)(pKa=10.53),因此pI>最大的pKa值(10.53)]

6、一个多肽可还原为两个肽段,它们的序列如下:

链1为Ala-Cys-Phe-Pro-Lys-Arg-Trp-Cys-Arg-Arg-

Val-Cys;链2为Cys-Tyr-Cys-Phe-Cys。

当用嗜热菌蛋白酶消化原多肽(具有完整的二硫键)时可用下列各肽:

(1)(Ala、Cys2、Val);

(2)(Arg、Lys、Phe、Pro);(3)(Arg2、Cys2、Trp、Tyr);(4)(Cys2、Phe)。

试指出在该天然多肽中二硫键的位置。

(结构如下图)

S-S

Ala-Cys-Phe-Pro-Lys-Arg-Trp-Cys-Arg-Arg-Val_Cys

S

S

Cys-Tyr-Cys-Phe-Cys

解:

嗜热菌蛋白酶作用专一性较差,根据题中已知条件:

(1)消化原多肽得到(Ala、Cys2、Val),说明链1在2位Cys后及11位Val前发生断裂,2位Cys与12位Cys之间有二硫键;

(2)由链1序列可得该肽段序列为:

-Phe-Pro-Lys-Arg-;

(3)由

(1)

(2)可知该肽段(Arg2、Cys2、Trp、Tyr)中必有一Cys来自链2,另一Cys为链1中8位Cys,即链1中8位Cys与链2中的一个Cys有二硫键;

(4)嗜热菌蛋白酶能水解Tyr、Phe等疏水氨基酸残基,故此肽(Cys2、Phe)来自链2,结合(3)中含Tyr,可知(3)中形成的二硫键为链18位Cys与链2中3位Cys与链2中3位Cys之间;(4)中(Cys2、Phe)说明链2中1位Cys与5位Cys中有二硫键。

综合

(1)、

(2)、(3)、(4)可得结果。

7、一个十肽的氨基酸分析表明其水解液中存在下列产物:

NH4+AspGluTyrArg

MetProLysSerPhe

并观察下列事实:

(1)用羧肽酶A和B处理该十肽无效;

(2)胰蛋白酶处理产生两各四肽和游离的Lys;(3)梭菌蛋白酶处理产生一个四肽和一个六肽;(4)溴化氢处理产生一个八肽和一个二肽,用单字母符号表示其序列位NP;(5)胰凝乳蛋白酶处理产生两个三肽和一个四肽,N-末端的胰凝乳蛋白酶水解肽段在中性pH时携带-1净电荷,在pH12时携带-3净电荷;(6)一轮Edman降解给出下面的PTH衍生物:

(图略)写出该十肽的氨基酸序列。

[Ser-Glu-Tyr-Arg-Lys-Lys-Phe-Met-Asn-Pro]

解:

(1)用羧肽酶A和B处理十肽无效说明该十肽C-末端残基为-Pro;

(2)胰蛋白酶专一断裂Lys或Arg残基的羧基参与形成的肽键,该十肽在胰蛋白酶处理后产生了两个四肽和有利的Lys,说明十肽中含Lys-…或-Arg-…-Lys-Lys-…或-Arg-Lys-…-Lys-…Arg-Lys-…四种可能的肽段,且水解位置在4与5、5与6或4与5、8与9、9与10之间;

(3)梭菌蛋白酶专一裂解Arg残基的羧基端肽键,处理该十肽后,产生一个四肽和一个六肽,则可知该十肽第四位为-Arg-;

(4)溴化氰只断裂由Met残基的羧基参加形成的肽键,处理该十肽后产生一个八肽和一个二肽,说明该十肽第八位或第二位为-Met-;用单字母表示二肽为NP,即-Asn-Pro-,故该十肽第八位为-Met-;

(5)胰凝乳蛋白酶断裂Phe、Trp和Tyr等疏水氨基酸残基的羧基端肽键,处理该十肽后,产生两个三肽和一个四肽,说明该十肽第三位、第六位或第七位为Trp或Phe;

(6)一轮Edman降解分析N-末端,根据其反应规律,可得N-末端氨基酸残疾结构式为:

-NH-CH(-CH2OH)-C(=O)-,还原为-NH-CH(-CH2OH)-COOH-,可知此为Ser;

结合

(1)、

(2)、(3)、(4)、(5)、(6)可知该十肽的氨基酸序列为:

Ser-Glu-Tyr-Arg-Lys-Lys-Phe-Met-Asn-Pro

8、一个四肽,经胰蛋白酶水解得两个片段,一个片段在280nm附近有强的光吸收,并且Pauly反应和坂口反应(检测胍基的)呈阳性。

另一片段用溴化氰处理释放出一个与茚三酮反应呈黄色的氨基酸。

写出此四肽的氨基酸序列。

[YRMP]

解:

胰蛋白酶酶专一水解Lys和Arg残基的羧基参与形成的肽键,故该四肽中含Lys或Arg;一肽段在280nm附近有强光吸收且Pauly反应和坂口反应(检测胍基的)呈阳性,说明该肽段含Tyr和Arg;溴化氰专一断裂Met残基的羧基参加形成的肽键,又因生成了与茚三酮反应呈黄色的氨基酸,故该肽段为-Met-Pro-;所以该四肽的氨基酸组成为Tyr-Arg-Met-Pro,即YRMP。

9蜂毒明肽(apamin)是存在蜜蜂毒液中的一个十八肽,其序列为CNVRAPETALCARRCOOH,已知蜂毒明肽形成二硫键,不与碘乙酸发生反应,

(1)问此肽中存在多少个二硫键?

(2)请设计确定这些(个)二硫键位置的策略。

[

(1)两个;

(2)二硫键的位置可能是1-3和11-15或1-11和3-15或1-15和3-11,第一种情况,用胰蛋白酶断裂将产生两个肽加Arg;第二种情况和第三种,将产生一个肽加Arg,通过二硫键部分氧化可以把后两种情况区别开来。

]

10、叙述用Mernfield固相化学方法合成二肽Lys-Ala。

如果你打算向Lys-Ala加入一个亮氨酸残基使成三肽,可能会掉进什么样的“陷坑”?

第五章蛋白质的三维结构

习题

1.

(1)计算一个含有78个氨基酸的α螺旋的轴长。

(2)此多肽的α螺旋完全伸展时多长?

[11.7nm;28.08nm]

解:

(1)α螺旋中每个残基绕轴旋转100°,沿轴上升0.15nm,故该α螺旋的轴长为:

78×0.15nm=11.7nm

(2)α螺旋每圈螺旋占3.6个氨基酸残基,故该α螺旋圈数为:

78÷3.6圈;α螺旋的直径约为0.5nm,故每圈轴长为0.5πnm。

完全伸展的α螺旋长度约为:

0.5π×(78÷3.6)≌34.01nm。

2.某一蛋白质的多肽链除一些区段为α螺旋构想外,其他区段均为β折叠片构象。

该蛋白质相对分子质量为240000,多肽链外姓的长度为5.06×10-5cm。

试计算:

α螺旋占该多肽链的百分数。

(假设β折叠构象中每氨基酸残疾的长度为0.35nm)[59%]

解:

一般来讲氨基酸的平均分子量为120Da,此蛋白质的分子量为240000Da,所以氨基酸残基数为240000÷120=2000个。

设有X个氨基酸残基呈α螺旋结构,则:

X·0.15+(2000-X)×0.35=5.06×10-5×107=506nm

解之得X=970,α螺旋的长度为970×0.15=145.5,故α-螺旋占该蛋白质分子的百分比为:

145.5/536×100%=29%

3.虽然在真空中氢键键能约为20kj/mol,但在折叠的蛋白质中它对蛋白质的桅顶焓贡献却要小得多(<5kj/mol)。

试解释这种差别的原因。

[在伸展的蛋白质中大多数氢键的共体和接纳体都与水形成氢键。

折旧时氢键能量对稳定焓贡献小的原因。

]

4.多聚甘氨酸是一个简单的多肽,能形成一个具有φ=-80°ψ=+120°的螺旋,根据拉氏构象图(图5-13),描述该螺旋的(a)手性;(b)每圈的碱基数。

[(a)左手;(b)3.0]

解:

据P206图5-13拉氏构象图,=φ-80°ψ=+120°时可知该螺旋为左手性,每圈残基数为3.0。

5.α螺旋的稳定性不仅取决于肽链间的氢键形成,而且还取决于肽链的氨基酸侧链的性质。

试预测在室温下的溶液中下列多聚氨基酸那些种将形成α螺旋,那些种形成其他的有规则的结构,那些种不能形成有规则的结构?

并说明理由。

(1)多聚亮氨酸,pH=7.0;

(2)多聚异亮氨酸,pH=7.0;(3)多聚精氨酸,pH=7.0;(4)多聚精氨酸,pH=13;(5)多聚谷氨酸,pH=1.5;(6)多聚苏氨酸,pH=7.0;(7)多聚脯氨酸,pH=7.0;[

(1)(4)和(5)能形成α螺旋;

(2)(3)和(6)不能形成有规则的结构;(7)有规则,但不是α螺旋]

6.多聚甘氨酸的右手或左手α螺旋中哪一个比较稳定?

为什么?

[因为甘氨酸是在α-碳原子上呈对称的特殊氨基酸,因此可以预料多聚甘氨酸的左右手α螺旋(他们是对映体)在能量上是相当的,因而也是同等稳定的。

]

7.考虑一个小的含101残基的蛋白质。

该蛋白质将有200个可旋转的键。

并假设对每个键φ和ψ有亮个定向。

问:

(a)这个蛋白质可能有多种随机构象(W)?

(b)根据(a)的答案计算在当使1mol该蛋白质折叠成只有一种构想的结构时构想熵的变化(ΔS折叠);(c)如果蛋白质完全折叠成由H键作为稳定焓的唯一来源的α螺旋,并且每molH键对焓的贡献为-5kj/mol,试计算ΔH折叠;(d)根据逆的(b)和(c)的答案,计算25℃时蛋白质的ΔG折叠。

该蛋白质的折叠形式在25℃时是否稳定?

[(a)W=2200=1.61×1060;(b)ΔS折叠=1.15kj/(K·mol)(c)ΔH折叠100×(-5kj/mol)=-500kj/mol;注意,这里我们没有考虑在螺旋末端处某些氢键不能形成这一事实,但考虑与否差别很小。

(d)ΔG折叠=-157.3kj/mol.由于在25℃时ΔG折叠<0,因此折叠的蛋白质是稳定的。

]

8.两个多肽链A和B,有着相似的三级结构。

但是在正常情况下A是以单体相识存在的,而B是以四聚体(B4)形式存在的,问A和B的氨基酸组成可能有什么差别。

[在亚基-亚基相互作用中疏水相互作用经常起主要作用,参与四聚体B4的亚基-亚基相互作用的表面可能比单体A的对应表面具有较多的疏水残基。

]

9.下面的序列是一个球状蛋白质的一部分。

利用表5-6中的数据和Chou-Faman的经验规则,预测此区域的二级结构。

RRPVVLMAACLRPVVFITYGDGGTYYHWYH

[残基4-11是一个α螺旋,残基14-19和24-30是β折叠片。

残基20-23很可能形成β转角]

10.从热力学考虑,完全暴露在水环境中和完全埋藏在蛋白质分子非极性内部的两种多肽片段,哪一种更容易形成α螺旋?

为什么?

[埋藏在蛋白质的非极性内部时更容易形成α螺旋。

因为在水环境中多肽对稳定焓(ΔH折叠)的贡献要小些。

]

11.一种酶相对分子质量为300000,在酸性环境中可解理成两个不同组分,其中一个组分的相对分子质量为100000,另一个为50000。

大的组分占总蛋白质的三分之二,具有催化活性。

用β-巯基乙醇(能还原二硫桥)处理时,大的失去催化能力,并且它的沉降速度减小,但沉降图案上只呈现一个峰(参见第7章)。

关于该酶的结构作出什么结论?

[此酶含4个亚基,两个无活性亚基的相对分子质量为50000,两个催化亚基的相对分子质量为100000,每个催化亚基是由两条无活性的多肽链(相对分子质量为50000)组成。

彼此间由二硫键交联在一起。

]

12.今有一种植物的毒素蛋白,直接用SDS凝胶电泳分析(见第7章)时,它的区带位于肌红蛋白(相对分子质量为16900)和β-乳球蛋白(相对分子质量37100)良种蛋白之间,当这个毒素蛋白用β-巯基乙醇和碘乙酸处理后,在SDS凝胶电泳中仍得到一条区带,但其位置靠近标记蛋白细胞素(相对分子质量为13370),进一步实验表明,该毒素蛋白与

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2