石油及天然气地质学教案及思考题Word版.docx

上传人:b****8 文档编号:12691125 上传时间:2023-06-07 格式:DOCX 页数:54 大小:73.59KB
下载 相关 举报
石油及天然气地质学教案及思考题Word版.docx_第1页
第1页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第2页
第2页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第3页
第3页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第4页
第4页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第5页
第5页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第6页
第6页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第7页
第7页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第8页
第8页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第9页
第9页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第10页
第10页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第11页
第11页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第12页
第12页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第13页
第13页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第14页
第14页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第15页
第15页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第16页
第16页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第17页
第17页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第18页
第18页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第19页
第19页 / 共54页
石油及天然气地质学教案及思考题Word版.docx_第20页
第20页 / 共54页
亲,该文档总共54页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

石油及天然气地质学教案及思考题Word版.docx

《石油及天然气地质学教案及思考题Word版.docx》由会员分享,可在线阅读,更多相关《石油及天然气地质学教案及思考题Word版.docx(54页珍藏版)》请在冰点文库上搜索。

石油及天然气地质学教案及思考题Word版.docx

石油及天然气地质学教案及思考题Word版

第一章油气藏中的流体

(Chapter1Liquidofhydrocarbonreservoir)

 

学时:

6 学时

基本内容:

① 石油的概念、组成、特征、分类及物理性质。

        ② 天然气的概念、产出类型、化学组成及物理性质。

        ③油田水的概念、类型和特征。

        ④油气的碳、氢稳定同位素。

教学重点:

石油的组成和特征,天然气的产出类型,油田水的类型。

教学内容提要:

第一节  石油

一、石油的概念及组成

石油(又称原油):

一种存在于地下岩石孔隙介质中的由各种碳氧化合物与杂质组成的,呈液态和稠态的油脂状天然可燃有机矿产。

(一)石油的元素组成

主要是碳、氢、硫、氮、氧。

尤其是碳、氢,两元素在石油中一般占95~99%,平均为97.5%。

除上述五种元素外,在石油中还发现其他微量元素,构成了石油的灰分。

(二)石油的馏分、组分与化合物组成

    1.石油的馏分组成

石油的馏分:

是利用组成石油的化合物具有不同沸点的特性,加热蒸馏,将石油切割不同沸点范围(即馏程)的若干部分,每一部分就是一个馏分。

    2.石油的组分组成

石油的组分:

石油化合物的不同组分对有机溶剂和吸附具有选择性溶解和吸附性能,选用不同有机溶剂和吸附剂,将石油分成若干部分,每一部分就是一个组分,分别为油质、苯胶质、洒精苯胶质及沥青质。

    3.石油的化合物组成

    在近代实验室中,用液相色谱可将石油划分为饱和烃、芳烃、非烃及沥青质。

    4.三者的关系

    石油的组分、化合物和馏分的大致对应关系如下:

    

   

二、石油的化合物及特征(本节重点)

(一)烃类化合物

1.正构烷烃

其含量主要取决于:

①生成石油的原始有机质的类型;②原油的成熟度:

    在石油中,不同碳原子数正烷烃相对含量呈一条连续的分布曲线,称为正烷烃分布曲线。

正烷烃分布曲线的应用:

判断成油原始有机质类型、有机质成熟度、油源对比。

    2.异构烷烃

    以异戊间二烯烷烃最重要,研究和应用最多的是植烷和姥鲛烷。

主要来源于植物的叶绿素的侧链——植醇或色素,为生物标志化合物。

常用于油源对比和沉积环境研究。

    3.环烷烃

石油中的环烷烃多为五员环或六员环。

随着成熟度的增高,由多环向单、双环转化,一般,单、双环占环烷烃的50—55%;三环占环烷烃的20%;四、五环占环烷烃的25%。

   

    4.芳香烃

    芳香烃包括苯及其同系物,有多环芳烃和稠环芳香烃。

    

(二)非烃化合物

    1.含硫化合物:

主要有硫醇(—SH)、硫化物(—S—)(包括硫醚 R—S—Rˊ、环硫醚)、二硫化物(—S—S—)以及噻吩衍生物。

2.含氮化合物:

可分为碱性和中性两大类。

碱性含氮化合物主要是吡啶、喹啉、异喹啉及吡啶的同系物。

中性含氮化合物有吡咯、吲哚、咔唑的同系物及酰胺等。

原油中含有具有重要意义的中性含氮化合物,即卟啉化合物,它是石油有机成因的重要生物标志物。

    3.含氧化合物:

主要有酸性和中性两大类。

酸性含氧化合物中有环烷酸、脂肪酸及酚,总称石油酸;中性含氧化合物有醛、酮等,其含量较少。

三、石油的分类

    Tissot和Welte(1978)提出的,该方案中的原油组成数据是指沸点>210℃的馏分分析数据。

该分类采用三角图解,以烷烃、环烷烃、芳烃+N、S、O化合物作为三角图解的三个端元。

    分为:

石蜡型、环烷型、石蜡环烷型、芳香—中间型、芳香—环烷型和芳香—沥青型六种类型。

四、海陆相原油的基本区别

海相

陆相

以芳香—中间型和石蜡—环烷型为主,饱和烃占25—70%,芳烃占25—60%。

以石蜡型为主,饱和烃占60—90%,芳烃占10—20%。

含蜡量低

含蜡量高

含硫量高

含硫量低

V/Ni>1

V/Ni<1

碳同位素δ13C值>-27‰

碳同位素δ13C值<-29‰

五、石油的物理性质(简介)

    1.颜色:

    2.比重:

液态石油的比重:

是指一大气压下,20℃石油与4℃纯水单位体积的重量比,用d420表示。

    3.石油的粘度

粘度分为动力粘度、运动粘度和相对粘度。

相对粘度又称恩氏粘度,是在恩氏粘度计中200ml 原油与20℃同体积蒸馏水流出时间的比值。

常用Et表示。

    4.荧光性

荧光性:

石油在紫外光照射下可产生延缓时间不足10-7秒的发光现象,称为荧光性。

    5.溶解性

6、凝固和液化

7、导电性

第二节  天然气

天然气:

广义上指岩石圈中存在的一切天然生成的气体。

石油地质学中研究的主要是沉积圈中以烃类为主的天然气。

一、天然气的分类

按照天然气的成因可分为有机成因和无机成因两种类型。

按照天然气存在的相态可以分为游离气、溶解气、吸附气和固态气水化合物。

按照天然气分布特征可以分为聚集型和分散型。

按照天然气的成分可分为烃类气体和非烃类气体。

二、天然气的产出类型  (本节重点)

    依其分布特征分:

聚集型、分散型

1.聚集型

    

(1)气顶气:

    

(2)气藏气:

干气气藏和湿气气藏。

    (3)凝析气:

当地下温度、压力超过临界条件后,由液态烃逆蒸发而形成的气体称为凝析气。

开采出来后,由于地表压力、温度较低,按照逆凝结规律而逆凝结为轻质油,称为凝析油。

   

2.分散型

(1)         油内溶解气

(2)         水内溶解气

(3)         煤层气:

指煤层中所含的吸附和游离状态的天然气。

    (4)固态气水合物:

是在冰点附近的特殊温度和压力条件下由烃分子和一定量的水分子结合而形成的固态结晶化合物。

主要分布在冻土、极地和深海沉积物分布区。

   

三、天然气的化学组成

天然气的元素组成与石油相似,以碳、氢为主,碳占65~80%。

天然气的化合物组成以甲烷为主,其次为重烃气,并含有数量不等的N2 、CO2、H2S 及其它惰性气体。

四、天然气的物理性质(简介)

    1.比重

    在标准状态下,单位体积天然气与同体积空气的重量比,即天然气的比重。

    2.粘度

    3.蒸气压力

    气体液化时所需施加的压力称蒸气压力。

蒸汽压力随温度升高而增大。

    4.溶解性

    在相同的条件下,天然气在石油中的溶解度远大于在水中的溶解度。

    5.热值

第三节  油田水

    一、油田水的概念及产状

    油田水:

从广义上理解,油田水是指油田区域(含油构造)内的地下水,包括油层水和非油层水。

狭义的油田水是指油田范围内直接与油层连通的地下水,即油层水。

根据水与油、气分布的相对位置,分为底水和边水。

二、           油田水的来源和形成(简介)

油田水来源于水盆地的沉积水、大气的渗入水、粘土矿物的初生水和地球深处的深层水。

三、油田水组成及特征

1.油田水的组成

    

(1)无机组成

    常用组分:

6种阴阳离子   HCO3-、SO42-、Cl-、Ca2+、Na+、Mg2+

微量组成:

碘(I)、溴(Br)、硼(B)、钡(Ba)等几十种。

指示特殊条件,CaCl2+高Br指示封闭环境。

    

(2)有机组成

 油田水中含有气态烃、液态烃、苯、酚及环烷酸皂等有机组分。

(3)溶解气

 溶解有O2、N2、CO2、H2S 、CH4、He。

    2.油田水的特征

油田水的总矿化度:

即水中各种离子,分子和化合物的总含量,以水加热至105℃蒸发后所剩残渣重量或离子总量来表示,单位ml/l、g/l或ppm。

特征及分布:

    ①油田水具有高矿化度

①海相沉积油田水矿化度比陆相高

②碳酸盐岩储层油田水矿化度比碎屑岩储层高

③保存条件好的储层水矿化度比开启程度高的储层高

    ⑤埋藏深的比埋藏浅的地层水矿化度高,但是,由于地质条件变化大,有些地区由于外来水的渗入或水力梯度增大,与油气有关的地下水矿化度也很低。

四、油田水的类型(本节重点)

在各种分类方案中,以苏林(Sulin)分类较为简明,以Na/Cl、(Na-Cl)/SO4和(Cl-Na)/Mg这三个成因系数,把天然水划分为四种基本类型。

苏林认为,油田水的水化学类型以氯化钙型为主,重碳酸钠型次之,硫酸钠型和氯化镁型较为罕见。

Sulin 的油田水成因分类表(据Sulin,1946)

水的类型

成因系数(浓度比)

 

 

Na/Cl

(Na-Cl)/SO4

(Na-Cl)/Mg

大陆水

硫酸钠型

>1

<1

<0

 

重硫酸钠型

>1

>1

<0

海水

氯化镁型

<1

<0

<1

深层水

氯化镁型

<1

<0

>1

   

五、油田水的物理性质(简介)

1.比重

2.粘度

3.透明度、颜色

4.气味

5.导电性

第四节  油气碳、氢稳定同位素

一、同位素的概念及碳稳定同位素分馏机理(简介)

    同位素:

指元素周期表中原子序数相同,原子量不同的元素。

    稳定同位素:

指原子核的结构不是自发的发生改变。

同位素分馏机理:

    1.同位素的交换反应

    2.光合作用的动力效应

    3.热力和化学反应的动力效应

    4.同位素的物理化学效应

二、稳定同位素在自然界的分布、比值符号和标准

自然界中碳、氢稳定同位素的符号、丰度、比值及标准见下表:

原子序数

同位素丰度(%)

同位素比

比值

标准及符号

比值符号

1

1H  99.985

2H   0.015

2H/1H

1.5×10-4

标准平均大洋水缩写号SMOW

δD(‰,SMOW)

6

12C  98.892

13C   1.108

13C/12C

1.12×10-2

南卡罗来纳州白垩系皮狄组美洲拟箭石缩写号PDB

δ13C(‰,PDB)

 

    同位素比值的的计算:

        Rs :

为样品的同位素比值;Rr:

为标准的同位素比值。

    标准之间的换算公式:

式中:

为求取对B标准的δ值;

              

为测得对A标准的δ值;

RAr、RBr:

为A、B标准的

比值。

三、油气中碳同位素的组成

1.原油

一般:

-22‰~-33‰;平均值:

-25‰~-26‰。

①海相:

值较高:

-27‰~-22‰;陆相:

值偏低:

-29‰~-33‰。

随年代变化,微变低。

③随组分分子量的增大,急剧增大。

2.天然气

随天然气成熟度的不同而不同:

生物成因气:

≤-60‰~-95‰    低

热解成因气:

-50‰~-20‰    高

以上两种气的混合气:

-50‰~-60‰

天然气成份中:

<

<

<

,分子量增加,

增大。

3.有机质和沉积物

腐泥型有机质:

值偏低;腐殖型有机质:

值偏高。

植物:

值一般在-24‰~-34‰;水生植物:

-6‰~-19‰

海泥有机质:

-20‰;淡水有机质:

-25‰;湖泥有机质:

-29.5‰~-34.5‰

四、氢同位素在油气中的组成

原油:

一般在-80‰~-160‰

δD:

饱和烃<芳烃<非烃,

δD与

值没有明显的相关关系。

天然气:

δD:

-105‰~-270‰,

δD与

存在不很明显的关系。

 

第二章油气生成与烃源岩

(Chapter2hydrocarbongenerationandsourcerock)

 

学时:

8 学时

基本内容:

① 油气生成的原始有机质—干酪根的形成、结构、类型。

② 有机质成烃演化的阶段性及成烃模式。

          

③ 油气生成理论的进展

④ 影响油气生成的因素及地质环境。

  

⑤天然气的成因类型及特征。

⑥ 烃源岩及其地球化学研究。

⑦油气地球化学对比      

教学重点与难点:

① 有机质成烃演化的阶段性及成烃模式。

    ② 影响油气生成的因素及地质环境。

   

    ③ 烃源岩及其地球化学研究

教学内容提要:

第一节  油气生成的原始物质

一、油气生成的原始物质的来源

油气生成的物质主要来源于生物的四大原始生物化学组成,它们是脂类化合物、蛋白质、碳水化合物、纤维素(木质素)。

其中脂类化合物的元素组成和分子结构与石油的最接近,是形成石油的主要组成,而纤维素,尤其是木质素的组成与泥炭接近,是成煤的主要组成。

 

天然有机质与石油平均元素组成

 

C%

H%

S%

N%

O%

碳水化合物

44

6

-

-

50

木质素

63

5

0.1

0.3

31.6

蛋白质

53

7

1

17

22

类脂

76

12

-

-

12

石油

84.5

13

1.5

0.5

0.5

 

二、油气生成的原始物质的形成    

沉积有机质:

通过沉积作用进入沉积物中并被埋藏下来的那部分有机质称为沉积有机质。

沉积有机质的形成:

生物死亡之后,大部分氧化成简单的分子,只有一小部分由于沉积在乏氧环境中被泥沙埋藏起来而被保存下来,成为沉积有机质(只占0.8%左右)。

三、干酪根(本节重点)

干酪根:

沉积岩中所有不溶于非氧化型酸、碱和非极性有机溶剂的分散有机质(亨特,1979年)。

(一)干酪根的形成

1. 微生物降解作用阶段

2.    腐殖质的形成阶段

3.    干酪根的形成阶段

(二)干酪根的结构及元素组成

干酪根的元素组成中以C为主,其次为H和O,还有N、S等。

它们的一般分布范围是C:

70~90%,H:

3~10%,O:

3~19%,N:

0.4~4%,S:

0.2~5%(据Tissot,1984)。

分子结构:

它是以环状结构为核心,带有各种烷基取代基核其它官能团的大分子,后者又彼此被次聚甲基或杂原子桥键所交联成的三维结构。

(三)干酪根的类型

Tissot(1974)根据干酪根的元素分析采用H/C和O/C原子比绘制相关图,即范氏图(Van  Krevelen图),将其分为三大类:

Ⅰ型干酪根:

是分散有机质干酪根中经细菌改造的极端类型,或称腐泥型,富含脂肪族结构,富氢贫氧,H/C高,一般为1.5~1.7,而O/C低,一般小于0.1,是高产石油的干酪根,生烃潜力为0.4~0.7。

                                 

Ⅱ型干酪根:

是生油岩中常见干酪根。

有机质主要来源于小到中的浮游植物及浮游动物,富含脂肪链及饱和环烷烃,也含有多环芳香烃及杂原子官能团。

H/C较高,约1.3~1.5,O/C较低,约0.1~0.2,其生烃潜力较高,生烃潜力为0.3~0.5。

   

Ⅲ型干酪根:

是陆生植物组成的干酪根,又称腐殖型。

富含多芳香核和含氧基团。

H/C低,通常小于1.0,而O/C高,可达0.2~0.3,这类干酪根生成液态石油的潜能较小,以成气为主,生烃潜力为0.1~0.2。

                      

第二节  沉积有机质的成烃演化

一、油气成因现代模式(本节重点、难点)

根据有机质的性质变化和油气生成沉积有机质的成烃演化可划分为三个阶段:

成岩作用阶段、深成作用阶段和准变质作用阶段;相应地又按有机质的成熟程度将有机质成烃演化划分为未成熟阶段、成熟阶段和过成熟阶段,镜质体反射率Ro与有机质的成烃作用和成熟度有良好有的对应关系。

门限温度:

随着埋藏深度的增加,当温度升高到一定数值,有机质才开始大量转化为石油,这个温度界限称门限温度。

门限深度:

与门限温度相对应的深度称门限深度。

①成岩作用阶段—未成熟阶段:

该阶段以低温、低压和微生物生物化学为主要特点,主要形成的烃是生物甲烷气,生成的正烷烃多具明显的奇偶优势。

成岩作用阶段后期也可形成一些非生物成因的降解天然气以及未熟油。

该阶段Ro小于0.5%。

 

    ②深成作用阶段—成熟阶段:

为干酪根生成油气的主要阶段。

按照干酪根的成熟度和成烃产物划分为两个带。

生油主带:

Ro为0.5~1.3%,又叫低—中成熟阶段,干酪根通过热降解作用主要产生成熟的液态石油。

该石油以中—低分子量的烃类为主,奇碳优势逐渐消失,环烷烃和芳香烃的碳数和环数减少。

凝析油和湿气带:

Ro为1.3~2.0%,又叫高成熟阶段,在较高的温度作用下,剩余的干酪根和已经形成的重烃继续热裂解形成轻烃,在地层温度和压力超过烃类相态转变的临界值时,发生逆蒸发,形成凝析气和更富含气态烃的湿气。

          

③准变质作用阶段—过成熟阶段:

该阶段埋深大、温度高,Ro>2.0%。

已经形成的轻质液态烃在高温下继续裂解形成大量的热力学上的最稳定的甲烷,该阶段也称为热裂解甲烷(干)气阶段。

  

二、有机质演化的主要控制因素——温度和时间

(一)作用机理

1.温度

化学动力学定律的一级反应方程:

 

速度常数k与时间是线性相关,k由阿氏方程求得:

 

2.时间

 

         

一级反应方程积分:

阿氏方程取对数:

 

(1)代入

(2)式,推导得:

从以上化学定律的原理可以得出以下几点:

①有机质在反应过程中,温度起决定作用,时间有补偿作用;

②时间的补偿是有限的,温度所产生的热量应超过活化能E。

(二)时间—温度指数(TTI)(实验课讲解)

 

第三节  油气生成理论的进展(选讲)

一、未熟-低熟油形成机理

1.未熟-低熟油的概念

未熟—低熟油:

指所有非干酪根晚期热降解成因的各种低温早熟的非常规油气,包括在生物甲烷气生烃高峰之后,在埋藏升温达到干酪根晚期热降解大量生油之前,经由不同生烃机制的低温生物化学反应生成并释放出来的液态和气态烃。

2.未熟—低熟油的成因

(1)强还原咸化环境藻类成烃

(2)盐湖相沉积有机质在低温条件下转化成烃

(3)含煤岩系特殊的富氢显微组分早期成烃

   内因:

有机质类型

   外因:

局部咸化环境、较高的地温梯度

二、煤成烃的形成

1.煤成烃的概念

煤成烃:

煤系地层的有机质在不同的演化阶段,其富氢组分所生成的气态和液态烃类。

2.煤成烃的演化特点:

沥青化作用

三、凝析气藏的形成机理

1.凝析气藏的概念

凝析气(凝析油):

当地下温度、压力超过临界条件后,由液态烃逆蒸发而形成的气体,称凝析气。

开采出来后,由于地表压力、温度较低,按照逆凝结规律而逆凝结为轻质油,称凝析油。

2. 凝析气藏的相态特征

①烃类纯物质的相态

临界温度:

液体能维持液相的最高温度,称为临界温度。

高于临界温度时,不论压力多大,该物质也不能凝结为液体。

临界压力:

在临界温度时该物质气体液化所需的最低压力,称为临界压力。

高于此压力时,无论温度多少,液体和气体不会共存。

②多组分烃类相态及凝析气藏的形成

3.凝析气藏的形成条件

①在烃类物系中气体数量必须胜过液体数量,才能为液相反溶于气相创造条件。

②地层埋藏较深,地层温度介于烃类物系的临界温度与临界凝结温度之间,地层压力超过该温度时的露点压力,这种物系才可能发生显著的逆蒸发现象。

第四节 油气形成的地质条件

一、油气生成的地质环境(本节重点、难点)

晚期生油理论认为:

油气生成必须具备两个条件,一是有足够的有机质并能保存下来;一是要有足够的热量保证有机质转化为油气。

1.大地构造环境

主要有三种情况,欠补偿环境、过补偿环境和补偿环境,只有长期持续下沉伴随适当升降的补偿环境,能保证大量有机质沉积下来,而且造成沉积厚度大,埋藏深度大,地温梯度高,生储频繁相间广泛接触,有助于有机质向油气转化并排烃的优越环境。

2.岩相古地理环境

主要有海相和陆相,海相中浅海大陆架、三角洲区以及海湾、泻湖这些环境,对有机质的保存和转化有利,是有利的生油区域;陆相中半深湖—深湖相区,汇集大量的有机质,沉积快,还原环境,有利于生油;浅湖、沼泽区以高等植物为主,可形成Ⅲ型干酪根,是生气的主要区域。

二、有机质转化成油的影响因素

1.细菌:

2.温度:

起决定作用。

3.时间:

时间对温度有补偿作用。

4.催化剂:

5.其它:

第五节天然气的成因类型

天然气按成因可分为四种类型:

生物成因气、油型气、煤型气和无机成因。

一、生物成因气

在成岩作用阶段因微生物化学作用而形成,化学组成以甲烷为主,含量高于98%,重烃含量小于0.2%,为典型的干气;δ13C值一般为-55‰~-90‰。

二、油型气

有机质在深成作用阶段热力作用下以及石油热裂解形成,化学成分重烃含量大于5%,最高可达40%—50%,过成熟气以甲烷为主,δ13C值随成熟度增高而增大,从-55‰~-35‰。

三、煤型气

是煤系地层中的有机质在热演化过程中而生成的。

化学组成重烃含量可达10%以上,甲烷一般占70%—95%,含有非烃成分;δ13C值一般为-41.‰~-24.9‰。

                                                                 

四、无机成因气

由地壳内部、深海大断裂、深海沉积物形成,化学组成甲烷占优势,非烃含量较高;δ13C值大于-20‰。

 

第六节  烃源岩及其地球化学研究

一、烃源岩的定义

烃源岩:

指富含有机质能生成并提供工业数量油气的岩石。

如果只提供工业数量的天然气,称为气源岩。

由生油岩组成的地层叫生油层。

在相同的地质背景下和一定的地史阶段中形成的生油岩与非生油岩的组合称为生油层系。

二、生油岩的岩石类型

岩石类型:

泥质岩类的泥岩、页岩等;碳酸盐岩类的泥灰岩、生物灰岩以及富含有机质的灰岩等。

三、生油岩的有机地球化学研究(本节重点)

1.有机质的丰度

常用指标有有机碳、氯仿沥青“A”、总烃,一般这些指标高,丰度高。

2.有机质的类型

    常用的指标有化学分析法,采用H/C和O/C原子比绘制相关图,即范氏图(Van  Krevelen图)来判断;热解资料的氢指数和氧指数;有机质的显微组分;生物标志化合物来确定。

Ⅰ型、Ⅱ型干酪根为主要生油母质,Ⅲ型干酪根为主要生气源岩。

3.有机质的成熟度

可用镜质体反射、孢粉和干酪根颜色、岩石热解资料、正烷烃奇偶优势来确定,颜色越深,Ro大于0.5%,CPI值接近1为成熟源岩。

     

4.有机质的转化指标

可用总烃/有机碳或氯仿沥青“A”/有机碳。

根据以上资料对烃源岩进行综合评价。

第七节  石油的地球化学对比

一、油源对比的意义

二、常用指标

对比的原则:

性质相同的两种油气应源于同一母岩;母岩排出的石油应与母岩中残留的石油相同,实际上油气在运移过程中会受到各种因素的影响,因此,相似即同源。

(一)正烷烃分布曲线

(二)微量元素

(三)生物标志化合物

1.卟啉

2.异戊二烯烷烃和甾萜化合物

(四)碳同位素

(五)轻烃的配对分子

三、气源对比及天然气成因分类

第三章储集层和盖层

(Chapter3reservoirbedandcapformation)

 

学时:

6 学时

基本内容:

① 储集层的物性参数及常规的研究方法。

        ② 碎屑岩储集层的储集空间类型及影响储集特征的因素、分布特征。

        ③ 碳酸盐岩储集层的空间类型及影响储集特征的因素、分布特征。

        ④盖层的类型及封闭机理。

教学重点与难点:

碎屑岩和碳酸盐岩储集层的储集空间类型及影响储集特征的因素。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2