遗传学果蝇杂交实验报告.docx

上传人:b****6 文档编号:13010932 上传时间:2023-06-10 格式:DOCX 页数:14 大小:112.56KB
下载 相关 举报
遗传学果蝇杂交实验报告.docx_第1页
第1页 / 共14页
遗传学果蝇杂交实验报告.docx_第2页
第2页 / 共14页
遗传学果蝇杂交实验报告.docx_第3页
第3页 / 共14页
遗传学果蝇杂交实验报告.docx_第4页
第4页 / 共14页
遗传学果蝇杂交实验报告.docx_第5页
第5页 / 共14页
遗传学果蝇杂交实验报告.docx_第6页
第6页 / 共14页
遗传学果蝇杂交实验报告.docx_第7页
第7页 / 共14页
遗传学果蝇杂交实验报告.docx_第8页
第8页 / 共14页
遗传学果蝇杂交实验报告.docx_第9页
第9页 / 共14页
遗传学果蝇杂交实验报告.docx_第10页
第10页 / 共14页
遗传学果蝇杂交实验报告.docx_第11页
第11页 / 共14页
遗传学果蝇杂交实验报告.docx_第12页
第12页 / 共14页
遗传学果蝇杂交实验报告.docx_第13页
第13页 / 共14页
遗传学果蝇杂交实验报告.docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

遗传学果蝇杂交实验报告.docx

《遗传学果蝇杂交实验报告.docx》由会员分享,可在线阅读,更多相关《遗传学果蝇杂交实验报告.docx(14页珍藏版)》请在冰点文库上搜索。

遗传学果蝇杂交实验报告.docx

遗传学果蝇杂交实验报告

遗传学果蝇杂交实验报告

广州大学

综合性实验报告

实验课题:

遗传学果蝇杂交实验

学院生命科学学院

年级:

14级

专业班级:

生物技术142班

姓名陈子禧学号1414300004

实验地点:

广州大学生化楼

指导教师汪珍春老师

 

1、前言

果蝇(fruitfly)是双翅目(Diptera),属果蝇属(genusDrosophila)。

Morgan(1909)利用黑腹果蝇(Drosophilamelanogaster)发现了连锁与互换定律。

果蝇作为实验材料有许多优点:

(1)饲养容易,生长繁殖要求较低,在常温下,以玉米粉等作饲料就可以生长、繁殖;

(2)生长迅速,12天左右就可完成一个世代,25℃条件下黑腹果蝇平均产卵量高达375.4粒(P<0.01)[1],因此在短时间内就可获得大量的子代,便于遗传学分析;(3)染色体数少,只有4对;故本研究采用黑腹果蝇e#和6#为研究材料进行正交和反交实验,对果蝇的性状(眼色、体色和翅型)进行观察记录并结合统计学对实验结果进行分析,以验证遗传学三大定律,并尝试培养和分析小量的F2代数据观察连锁交换现象。

关键词:

黑腹果蝇;遗传学;正交;统计学;遗传学三大定律;连锁交换

2、实验材料

品种:

黑腹果蝇(Drosophilamelanogaster)

品系:

突变型(e#):

长翅、黑檀体、红眼;突变型(6#):

小翅、灰身、白眼

工具:

显微镜、电子天平、培养瓶、棉塞、量筒、烧杯、温度计、玻璃棒、

解剖针、毛笔、解剖剪、镊子、恒温恒湿培养箱、电炉

药品及材料:

燕麦、玉米粉、蔗糖、琼脂粉、酵母粉、丙酸、乙醚等

3、实验方法

3.1、果蝇的饲养

3.1.1培养基的配制:

①称量100ml水+0.85g琼脂+7g蔗糖,将上述三份材料倒入白瓷杯,保留约30ml的水待用,将电炉打开,搅拌至80°C煮溶②将称量的8g燕麦玉米粉干燥混合物与上述保留的30ml冷水混匀成浆糊,搅匀并加入白瓷杯中③不断搅拌体系约5min直至煮沸(此时应成糊状),关火④等待体系自然降温,温度计测温至80°C,倒入1g干性酵母粉和0.4ml丙酸⑤冷却至70°C,趁热将白瓷杯的混合物转移至大烧杯,并分装到各个培养瓶。

⑥待水珠或水雾散去后,封上纱布并写上制作日期和品系信息及使用者姓名,待24小时或至少隔一夜后使用。

⑦新配制的培养基有效使用期最长为7天,超过7天的培养基水分不足易与瓶壁分离且滋生霉菌,影响实验结果质量。

3.1.2生活周期:

果蝇的生活周期包括四个发育阶段:

卵、幼虫、蛹和成虫四个发育阶段,本实验中从初生卵发育至新羽化的成虫为一个完整的发育周期,在25℃,60%相对湿度条件下,大约为9至10天(因交配到产卵的时间未能准确观察,故仅能推算为9至10天)。

3.1.3培养条件:

25°C恒温、60%相对湿度恒湿的培养箱中培养。

3.2、果蝇杂交的流程

3.2.1杂交实验的果蝇品系

本人实验组:

突变型(e#)♀(黑檀色、红眼、长翅)╳突变型(6#)♂(灰黄色、白眼、短翅)

组员实验组:

突变型(6#)♀(黑檀色、红眼、长翅)╳突变型(e#)♂(灰黄色、白眼、短翅)

3.2.2杂交实验前的准备工作

①每一培养瓶要封好纱布绑好橡皮筋贴好标签,注明品系、时间、班别及姓名。

②分别取原种e#和6#于两个培养瓶中培养7~8d,当出现较多蛹或蛹变黑时除去原种。

③然后每隔8h取一次处女蝇,雌雄性别的鉴定主要通过性梳的有无以及背上条纹数量的差异来区分[2](见图1),若超过8h的雌蝇除去,可保留雄蝇,将取出处女雌和雄性果蝇分别置于两个培养瓶中,直到各瓶有6—8只果蝇。

④将收集到的处女蝇和雄性果蝇分别置于1号、2号瓶进行杂交,(杂交时间2016.10.128:

00转瓶时间10.1812:

00),将转瓶瓶号标记为3号、4号。

⑤根据亲本的生活周期(原种产卵至亲本羽化为成虫的时间),推测出本人组的F1由亲本杂交到羽化成虫的时间约为9天。

⑦开始对F1的数目与性状进行统计并记录(第一批成虫羽化时间:

2016.10.21)

以7天为保守时间收集F1代(1、2号瓶的可收集时间截止10.28,已于当天17:

30停止收集,3、4号瓶收集时间延迟至10.31)

图1实验过程中雌雄果蝇外形比较及雄性性征.A:

雌雄果蝇外形侧面观B:

雄性果蝇性梳

Fig.1ExternalcharactersofDrosophilamelanogasterbetweenmaleandfemale;Malesexuality.A:

Lateralviewofmale(left)andfemale(right);B:

Sexualcomb---thesexualcharacterofmale

4、实验结果

表16#×e#果蝇杂交F1实验结果

e#♀×6#♂(本人)e#♂×6#♀(组员)

♀♂♀♂

红灰长1721711620

白灰小000156

合计172171162156

Table1.Charactersoffilialgeneration1st

5、结果分析

5.1、性别比分析

根据表1,雌果蝇合计334,雄果蝇合计327,雌雄比例约为1.02

以下将假设性别决定的方式为XY型,描绘遗传流程为(图2),X2检验(卡方检验)(列表)

亲本:

P♀XX×♂XY

配子:

XXXY

F1:

XXXYXXXY

雌性雄性

1:

1

图2果蝇性别遗传流程图示

Fig.2ProcedureofgeneticsexualityinDrosophilamelanogaster

表2性别比X2检验

雄性

雌性

合计

实际观测数O

327

334

661

理论频数P

1/2

1/2

1

理论数E

330.5

330.5

661

O-E

-3.5

3.5

0

0.027

0.027

Table2.X2-Testofsexratio

由表2计算结果可得:

X2=0.027

 

上述分析均与实验数据基本吻合。

所以可以证明果蝇的性别决定方式为XY型。

5.2、眼色分析

根据实验数据可知(表1),在F1代中,e#♀×6#♂正交的结果是不论雌雄均为红色,反交的结果是雌性为红眼,雄性为白眼,故可以判定红眼为显性性状,白眼为隐性性状,且控制该性状的基因位于X染色体上,红眼基因以XW表示,白眼基因以Xw表示。

表3眼色数据统计

e#♀×6#♂(本人)

e#♂×6#♀(组员)

红眼

343

162

白眼

0

156

合计

343318

Table3.Thestaticsticsofeyes’colour

上述表3统计数据中正交e#♀×6#♂产生的子代均为红眼,而反交e#♂×6#♀中的子代雌性均为红眼,雄性均为白眼。

为明显的交叉遗传现象,故假设控制眼色的基因位于X染色体上,正交组e#♀×6#♂的遗传过程如下图(图3)所示。

正交组亲本:

P♀XWXW×♂XwY

配子:

XWXWXwY

F1:

XWXwXWYXWXwXWY

雌雄均为红眼

反交组亲本:

P♀XwXw×♂XWY

配子:

XwXwXWY

F1:

XWXwXwYXWXwXwY

雌性红眼雄性白眼

1:

1

图3.果蝇眼色遗传流程图示

Fig.3ProcedureofgeneticeyecolourinDrosophilamelanogaster

据上述图3可知,正交组中红眼雌性和红眼雄性的比例符合1:

1的关系(在0.05显著标准下符合),同理可知,反交实验会出现交叉连锁,即6#♀产生的Xw将和e#♂产生的Y配子结合,导致F1中雄性全为白眼,雌性全为红眼。

上述分析均与实验数据基本吻合。

故综上所述,假设成立,成功验证控制眼色的基因位于X染色体上。

5.3、翅形分析

正交e#♀×6#♂中,雌性亲本的翅形为长翅,雄性亲本的翅形为短翅,子一代全部为长翅;其反交e#♂×6#♀的雌性亲本为短翅,雄性为长翅,F1的雄性全部为短翅,雌性全部为长翅,由此可见,无论是正交还是反交,都出现了长翅性状,由此可推测长翅由显性基因决定而短翅由隐性基因决定。

另外在组员的反交实验中,性状与性别有关,且出现了交叉遗传现象,其中小翅性状和白眼性状出现连锁现象,因此可以假设短翅基因位于X染色体上,相对长翅基因为隐性,短翅基因用Xm表示,故其等位基因用表示XM表示。

假设本人正交组e#♀×6#♂遗传过程如下图(图4)所示。

 

正交组亲本:

P♀XMXM×♂XmY

配子:

XMXMXmY

F1:

XMXmXMYXMXmXMY

雌雄均为长翅

反交组亲本:

P♀XmXm×♂XMY

配子:

XmXmXMY

F1:

XMXmXmYXMXmXmY

雌性长翅雄性短翅

1:

1

图4.果蝇翅型遗传流程图示

Fig.4ProcedureofgeneticwingtypeinDrosophilamelanogaster

故由上图4可得知,e#♀×6#♂的子代雄雌均为长翅,同理可推知,反交实验会出现交叉连锁,即6#♀产生的Xm将和e#♂产生的Y配子结合,导致F1中雄性全为短翅,雌性全为长翅,长翅雌性和短翅雄性的比例符合1:

1的关系(在0.05显著标准下符合)。

另外其中短翅性状和白眼性状出现连锁现象可以进一步支持假设。

上述分析均与实验数据基本吻合。

故综上所述,假设成立,成功验证控制翅型的基因位于X染色体上。

5.4、体色分析

根据表1显示,突变型(e#)的体色为黑檀色,突变型(6#)的体色为灰黄色,而F1代的体色均为灰黄色。

子代体色不因性别不同而有差异,故假设控制体色的基因位于常染色体上,并且黑檀色为隐性性状,灰黄色为显性性状,故控制显性性状的基因以E表示,控制隐性性状的基因以e表示。

遗传过程如图5示。

ee×EE

亲本:

P

配子:

eeEE

F1:

EeEeEeEe

均为灰色

图5果蝇体色遗传流程图示

Fig.5ProcedureofgeneticbodycolourinDrosophilamelanogaster

故由上图可知,正交组e#♀×6#♂的子代均为灰色,同理可得反交组的子代也为灰色,以上分析均与实验数据符合,故综上所述,假设成立,成功验证控制体色的基因位于常染色体上。

6、结论

6.1基因位置

本实验研究的性状主要为3种,分别为体色、颜色、翅型,而控制以上三种性状的基因分别以眼色W-w翅型M-m体色E-e表示。

而通过对性别比例(sexratio)进行卡方检验(X2-Test)我们推断XY染色体控制果蝇性别。

另外通过假设遗传流程、卡方检验并与实验数据进行比对,我们可以证明控制体色的E-e基因位于常染色体上;控制眼色的W-w基因位于性染色体(X)染色体上,控制翅型的M-m基因同样位于性染色体(X)染色体上。

6.1亲本及F1代的性状及基因型

亲本及F1代的性状及基因型如下图(图4)所示

体色

眼色

翅型

基因型

突变型e#

黑檀色

红色

长翅

eeXMWXMW/eeXMWY

突变型6#

灰黄色

白色

短翅

EEXmwXmw/EEXmwY

正交组F1

灰黄色

红色

长翅

EeXMWXmw/EeXMWY

反交组F1

灰黄色

红色、白色

长翅、短翅

EeXMWXmw'/EeXmwY

Table4.Thecharactersandgenetypeofparentsandfilialgeneration1st

对果蝇品系进行资料搜集,我们得知突变型(e#)的性状为黑檀色、红眼、长翅,其雌性基因型为eeXMWXMW,雄性基因型为eeXMWY;而突变型(6#)的性状为灰黄色、白眼、短翅,雌性基因型EEXmwXmw,雄性基因型为EEXmwY。

正交实验中产生的F1仅具有一种性状,为灰黄色、红眼、长翅基因型有EeXMWXmw和EeXMWY;反交实验中产生的F1有两种性状,分别为灰黄色、红眼、长翅和灰黄色、白眼、短翅,基因型有EeXMWXmw和EeXmwY。

以上控制眼色和翅型的基因虽处于同一染色体,但仍能进行交换,称为连锁交换现象,在本实验的F2代(共107只)中同样可以得到体现,后续将继续进行分析。

6.2亲本产生F1代的遗传流程图

正交组Pe#♀eeXMWXMWX6#♂EEXmwY

配子eXMWEXmwEY

F1EeXMWXmwEeXMWY

雌性灰身红眼长翅1:

1雄性灰身红眼长翅

反交组Pe#♂eeXMWYX6#♀EEXmwXmw

配子eXMWeYEXmw

F1EeXMWXmwEeXmwY

雌性灰身红眼长翅1:

1雄性灰身白眼短翅

Fig.6ProcedureofgeneticheredityinDrosophilamelanogaster

6.4F2代的统计及简要分析

表5.F2推测性状比例和实际观察比例

红灰长

白灰短

红黑长

白黑短

推测性状比例

56.25

18.75

18.75

6.25

实际性状比例

57.94

7.47

21.5

0.93

Table5.TheComparisionoffilialgeneration2ndbetweenpresumedcharacteristicratioandexperimentedobservedcharacteristicratio

经过另一个星期培育,采用正交的F1直接繁殖F2代,若不考虑连锁交换现象本人推测有四种性状分别为,红灰长(9/16其中6份♀3份♂);白灰短(3/16其中3份均♂);红黑长(3/16其中2份♀1份♂)白黑短(1/16均♂)。

但实际数据能观察到白长灰(4只)、白长黑(1只)、红灰短(1只),所以根据上述结果可以判断,性染色体上发生了连锁交换。

所以会出现超出本人预计范围内的性状类型,而红灰长(62只)比例为57.94%,与推测中的9/16(56.25%)十分接近,基本与推论吻合,白灰短(8只)7.47%与推测的18.75%相差甚大,红黑长(22只)比例为21.50%,与推测的18.75%较接近,而白黑短(1只)0.93%与推测的6.25%亦相差甚大。

但倘若数据量增多,应该比例会逐渐靠近,同样可以计算出控制眼色和翅型基因的交换值,所以通过突变型(e#)♀与突变型(6#)♂杂交产F2代,可以研究性连锁遗传、分离律、性染色体与常染色体上基因自由组合,性染色体的连锁交换,并可计算交换值的发生[5]。

6.3结果汇总与分析

本实验中F1代正交组(本人组)的样本量为343只,反交组(组员组)的样本量为318只,并对正交组产生的F1代交配取得107只的F2代数据。

其中通过对F1代的遗传过程假设和经过卡方检验进行分析,在0.05的显著标准下,性别比例符合1:

1的关系,其性别决定方式为XY染色体控制;通过假设遗传流程和比对实验结果可以得知控制眼色和翅型的基因位于同一条性染色体上,且会出现连锁交换现象(F2可证明),其中红眼为显性性状,白眼为隐性性状,长翅为显性性状,短翅为隐性性状;另外通过遗传图示和验证结果,我们发现控制体色的基因位于常染色体上,其中灰色为显性性状,黑檀色为隐性性状。

根据遗传学的原理,判断显隐性的依据是在F1中能够表现的性状为显性,反之为隐性;某性状在正反交中的结果相同,则控制该性状的基因位于常染色体上,若出现交叉遗传和隔代遗传则该基因位于性染色体上[3]。

而本次实验主要利用了分离规律、自由组合规律、连锁规律。

另外,各种操作的准确性对实验的顺利进行有很重大的意义,培养基的干湿度;果蝇生长的条件;处女蝇的选取;性状的准确观察;处死果蝇的方法;转瓶的技巧;快速增加后代数量的方法等。

控制好这些影响因素,可大大提高实验结果的准确性[4]

7、特例说明

在10月31日23:

30最后一次取样中,转瓶4号瓶中出现一只白眼雄性个体,而距离该瓶第一批羽化成虫出现已过去6天稍多,推测可能为F2已经出现,因为样本量总共仅有343只,出现白眼基因突变的可能性较低。

经文献查证,发育速率随温度升高明显加快,在15℃下,完成发育需要长达41d,而在30℃下,黑腹果蝇完成发育仅需7d,并且黑腹果蝇的发育起点温度为12.8℃,充分完成发育所需有效积温为123.3日·度[6]另外我们的实验期间停电且期间温度较高,或者观察时间较长,有可能导致有效积温上升,使F2代的果蝇发育完成。

终止该培养瓶的取样。

并继续进行F2的培育。

8、感想与建议

在本次遗传学实验中,个人感觉收获很大,因为实质上自从高中起,三大遗传定律已经耳熟能详,但一直缺乏机会进行实践,本次实验充分补充了现实操作知识,更好的理解课本知识。

当遇到困难和实验意外时懂得如何去进行解决,另外也有了解到一部分SPSS软件的简易操作,亦明白到F2代的统计方法,所以感到收获很大。

但我希望我们的师弟师妹可以增添更多的课时可以使他们有足够的时间去培育F2和进行数据分析,我相信教育效果会锦上添花。

在此十分感谢我的指导老师汪珍春老师,其中有一部分参考文献也出自她手笔,同时亦十分感谢我的组员吴咏诗的帮助和鼓励。

很珍惜有本次的实验体验。

 

参考文献

[1]张治军,郦卫弟,贝亚维.温度对黑腹果蝇生长发育、繁殖和种群增长的影响[J].浙江农业学报,25(3):

520-525

[2]孟敏,胡甘,王竹林.果蝇杂交实验教学的小窍门[J].实验技术与管理,32(8):

173-175

[3]张红瑞,夏至,李贺敏.联系专业实际进行药用植物学野外实习[J].中国医药导报,7(24):

7-8.

[4]汪珍春,周伯春,田长恩,胡位荣.引导学生有效分析遗传学综合性实验结果的探索与实践[J].安徽农业科学,40(23):

11895-11897

[5]周玉萍,田长恩,周伯春,王正询.黑腹果蝇杂交实验的教学改革[J].遗传(北京),24(3):

345~348

[6]张治军,郦卫弟,贝亚维.温度对黑腹果蝇生长发育、繁殖和种群增长的影响[J].浙江农业学报,25(3):

520-525

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2