人教物理八年级动手动脑学物理答案.docx

上传人:b****8 文档编号:13078645 上传时间:2023-06-10 格式:DOCX 页数:20 大小:83.75KB
下载 相关 举报
人教物理八年级动手动脑学物理答案.docx_第1页
第1页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第2页
第2页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第3页
第3页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第4页
第4页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第5页
第5页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第6页
第6页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第7页
第7页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第8页
第8页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第9页
第9页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第10页
第10页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第11页
第11页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第12页
第12页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第13页
第13页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第14页
第14页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第15页
第15页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第16页
第16页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第17页
第17页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第18页
第18页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第19页
第19页 / 共20页
人教物理八年级动手动脑学物理答案.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

人教物理八年级动手动脑学物理答案.docx

《人教物理八年级动手动脑学物理答案.docx》由会员分享,可在线阅读,更多相关《人教物理八年级动手动脑学物理答案.docx(20页珍藏版)》请在冰点文库上搜索。

人教物理八年级动手动脑学物理答案.docx

人教物理八年级动手动脑学物理答案

八年级“动手动脑学物理”参考答案及提示

第六章  电压  电阻

一、电压

1.此题的目的是训练学生动手连接闭合电路,学习用电压表测量电压的方法。

注意要求学生不仅在纸面上会连接电路、画电路图,而且一定要进行动手操作训练。

课本中只给出了连接小灯泡的情况,实际教学中也可改用其他用电器,如小电机、音乐门铃等,换一个新的用电器就是一次新的练习,要多动手练才行。

另外,在如何选取量程方面也要得到训练。

 

2.这是一个自制电池的设计制作型练习,又是一个让学生学会连接电压表,并能读取电压表上读数的技能性训练题目。

实验时应该指导学生采用“试触”,即在合上开关时要轻轻接触一下就断开,而不是一下子将开关合到底长时间不断开。

“试触”在电学实验中很重要,要求学生掌握这种方法。

根据电压表上指针的方向变化,就可判断哪个金属片是电池的正极,哪个金属片是电池的负极。

本题可以考虑用一定的时间让学生交流(包括让同学们互相演示)。

 

3.这是个电表读数练习题。

学生已有电流表读数的基础,注意让学生分清不同量程下1个小格所代表的不同的量值,并要求学生在记录读取的测量数据时,务必将数值和单位一并写出。

 

4.这是一个训练学生正确连接电压表的题目。

初学者在连接电路时,容易犯顾头不顾尾的毛病,这里的错误是只想到要将电压表并联使用的原则,而没有注意与电源连接的问题。

5、一节干电池电压是1.5V,一个铅蓄电池电压是2V,要求电源电压是6V,需干电池4节串联,铅蓄电池3节串联。

二、探究串联电路中电压的规律 

1、

不同之处:

  电流表要串联在电路中使用。

电流表本身内阻非常小,所以绝对不允许不通过任何用电器而直接把电流表接在电源两极,这样,会使通过电流表的电流过大,烧毁电流表。

  电压表要并联在电路中使用,和哪个用电器并联,就测哪个用电器两端电压;和电流表不同的是,电压表可以不通过任何用电器直接接在电源两极上,这时,测量的是电源电压。

 

相同之处:

  电流表和电压表的使用步骤基本相同,都分为调、选、连、读四步:

 

调——使用前先将表的指针调到“零刻度”的位置。

 

选——根据电路的实际情况选用合适的量程。

在不知实际电流或电压的情况下,可采用“试触”的方法判断是否超过量程,注意,试触时要接在大量程的接线柱上,并且试触时动作迅速。

 

连——按照电流表和电压表的各自连接方法将表正确连入电路,同时注意表的正、负接线柱与电流流向的关系,必须保证,电流从表的正接线柱流入,从负接线柱流出。

 

读——正确读出表指针所示的数值,读数时一定要注意选用的量程及其对应的最小刻度值.

 

2、2.5V;2.5V;6.3V

3、这仍是一个自制电池的设计制作型练习题。

与上节不同的是选用水果代替盐水溶液,实验时仍应指导学生采用“试触”的方法,根据电压表上指针的方向变化,来判断哪个金属片是电池的正极,哪个金属片是电池的负极。

 

  通过学生动手操作,选取不同的金属和不同的水果(每个学生自愿选取两种金属和一种水果)进行实验,可以考虑用一定的时间让学生交流(包括让同学们互相演示),这种交流会使学生对不同物质所具有的共性及个性有所认识。

 

三、电阻

1、电线2

2、24;0.024

3、材料;长度;横截面积

四、变阻器

1.此题的目的是继续训练学生连接闭合电路的能力,同时学会用变阻器控制小灯泡亮度的连接方法。

注意不仅要在纸面上会连接电路、画电路图,还一定要进行多次练习。

这是上面“探究怎样用变阻器改变灯泡的亮度”的巩固性题目。

 

2.目的同上。

将接线柱接错,使变阻器成为一个不变的电阻。

让学生指出错误之处后,要求学生动手改接。

 

第七章 欧姆定律

一、探究电阻上的电流跟两端电压的关系

    想想议议:

课本中就电压的改变给出了改变电池节数的方法(图6-1),这是最简单的。

同时课本在此采用比较开放的方式,让学生自己想办法处理电压的改变问题,也提到可以使用学生电源等方法,不过没有给出具体的操作方案,教师可以根据学校和学生的实际情况进行处理。

一般是采用滑动变阻器进行分压(图6-2),由于学生已经有串联电路中电压的规律和滑动变阻器的知识做铺垫,因此应该鼓励学生运用这种方法。

可以让学生想一想,为什么电路图6-1的设计不够合理?

 

另外,应该提醒学生注意:

要考虑到物理规律的客观性、普遍性和科学性,在实验设计中,要采用更换定值电阻进行反复实验的方法。

这种方法对于学习物理是不可忽视的,本章已是第二次出现这种处理方法。

 

二、欧姆定律及其应用

1.应用欧姆定律的计算问题。

课本中的例题已经有了铺垫,直接将已知的物理量代入公式计算即可。

 

(答案:

I=2.27A) 

2.不能直接将数值代入公式计算,先将已知的物理量的单位统一为国际单位再代入公式进行计算。

 

(答案:

U=210V) 

3.先将已知的物理量的单位统一为国际单位再代入公式进行计算。

 

(答案:

R=8.8Ω) 

4、串联后的总电阻为20Ω,I=0.3A

5、

(1). 因为是在并联电路中,所以电压都相等. 所以直接用R=U/I=24V/0.2A=120Ω ∴R2=120Ω

 

(2).(很麻烦,要算很多) 先求通过R1的电流为:

I1=U/R1=24V/80Ω=0.3A 

I总=I1+I2=0.3A+0.2A=0.5A 

R总=U/I总=24V/0.5A=48Ω

1/80Ω+1/R2=1/48Ω    解得:

R2=120Ω

(3).参考:

I1=U/R1=24V/80Ω=0.3A,

由R1:

R2=I2:

I1得:

80Ω:

R2=0.2A:

0.3A 解得:

R2=120Ω

6、这种说法是错误的,电阻是导体本身的属性,电阻的大小决定于导体的材料,长度,横截面积和温度,不随电压或电流的变化而变化

三、测量小灯泡的电阻

1、滑动变阻器接线柱接错,短路接入电路,变阻器失去改变电路电阻的作用;电压表正负接线柱接错了;电压表量程也选错了,应选用0~3V的量程;

2、2.25A(计算过程中电流中间结果取三位小数,因题目中的电流数值为两位小数。

3、结论:

 

得出的电阻随电压的降低变小 

解释:

 

小灯泡的灯丝是用金属钨做成的 

而纯金属的电阻率虽温度的升高而升高 

即温度越高,灯丝的电阻就越大 

电压越高,灯的电功率越大,则温度越高 

随电压的降低,灯丝的温度下降 

电阻跟着减小 

所以得出的电阻值会变小

四、欧姆定律和安全用电

1.从安全教育的角度考虑,使学生具有安全用电的意识。

 

2.电流表的内阻很小,直接接在电源两极后,由I=U/R知,通过电流表的电流与其内阻成反比,故电路中的电流很大,会烧坏电流表。

2.查找资料能力的训练。

 

第八章 电功率

一、电能

1.本书的练习侧重与生活实际相联系。

最后一问的结论是开放的。

电费的变化可能是由于费率调整,或用电量有变化。

 

2.这也是一个开放性问题,让学生自己去计算一下,意在学习处理实际问题。

 

3.意在学习处理实际问题。

4.意在学习处理实际问题。

5.这可以让学生自己去查,培养学生查找资料的能力。

二、电功率

1.  0.0045A。

 

2.  0.04KW

3.      220.26V

4.   60.5Ω

5. 根据P=UI,以电能表的标定电流值为上限,U为220V,计算出总功率。

(如总功率需要整数,则用去尾法,同学们可以想想为什么?

6.要用电能表测量某用电器的电功率,需关闭其他所有的用电器,然后数出它工作时电能表在一段时间(如lmin)内转过的圈数,根据电能表的参数换算成电能,利用公P=W/t即可算出。

 

  可以补充以下问题:

把你的计算结果与用电器铭牌上标识的额定功率相比较,计算结果准确吗?

如果结果不同,原因可能是什么?

估计你家中还能安装多大功率的电器?

如果随手关掉不用的用电器(如电灯、电风扇等),估算一下每月可以节约多少电能?

节约的电费是多少?

 

二、测量小灯泡的电功率

1、

错误或不妥之处:

滑动变阻器接法不对,应改为“一上一下”,电压表的正负接线柱不对。

2、1936Ω;6.25W;暗些

3、2×109KW;2×109J;

4、87.6KW

5、解释1:

长度变小了,灯泡的电阻变小,根据P=U^2/R,所以功率变大了 

解释2:

重新搭上去的灯丝,通电后,发光部分比以前短了。

灯丝短了,就是,灯泡的电阻变小了,在电压不变的情况下,电流就会增大。

功率=电流*电压,所以功率反而提高了。

而灯丝的粗细(横截面)并没有改变(灯泡出厂时,灯丝的粗细决定它的瓦数(功率)。

所以重新搭好的灯丝就会超过额定功率工作。

当然就要亮得多了。

不过因是超负荷运行,所以寿命也不长了。

这种情况只能应急处理而以。

你还是得快快换新的灯泡(光源)吧!

第八章 电功率

四 电与热

1、480J

2、27000J

3、40W;24000J

4、1.1×103W;44Ω

5、略

6、略

五、电功率和安全用电

1.略。

 

2.可以用类似的题目,对教室或实验室所有用电器进行统计和计算。

 

3.略。

4.保险丝电阻比较大,使得电能转化为热的功率比较大,保险丝温度易升高,达到熔点后就自动熔断。

六生活用电常识

1、用电器之间不用串联,用并联,还有电压方面的原因,这里只要求学生知道它们可以分别控制就行了。

 

2、如果开关和它控制的灯泡之间并联,后果是很危险的。

这点要让学生说出来并画图说明。

 

3、两种接法都能控制电灯,但是规范的接法是把开关接在火线和电灯之间,这样在关灯之后电灯上带电的可能性就很小了。

 

  与此类似的还有,安装螺丝口灯泡时火线应该接在灯口的中心还是接在灯口内侧的螺纹套筒上?

 

4、作为开放式的问题出现,目的是让学生注意观察生活,勤于思考,对自己还未了解的新事物(这里是新仪器)具有好奇心。

 

第九章电与磁

一、磁现象

二、磁场

1.磁感线总是从N极出发回到S极。

因此,磁体的名称以及小磁针的指向如图8-1所示。

 

2.根据磁体北极的定义,指南针N极总是指向北方。

而指南针N极所指方向与磁感线方向相同,因此课本图8.1-9的上端是地理的北极,下端是地理的南极。

磁场总是从N极出发回到S极,因此图8.1-9的下端是磁北极,它应该位于地理南极附近。

 

3.可以让学生按照课本上介绍的方法去做,难点是按扣在针尖上的平衡问题。

也可以把经过磁化的铁钉(或缝衣针等物体)放在小块塑料泡沫(或小纸船)里,让它浮在水面上,铁钉一定是指向南北方向。

 

4.磁体的应用有很多,如铅笔盒、磁性门吸、擦外层玻璃用的刷子等等。

 

三、电生磁

1、甲图左端为S极,右端为N极;乙图上端为N极,下端为S极。

2、

3、小磁针的N极由向下转为向右

4、线管在电流的作用下产生磁性,和磁铁一样,在地磁场的作用下只在南北方向上停下来 

5、

∙植物的茎根据生长方式可以分为:

直立茎、缠绕茎、攀缘茎和匍匐茎. 

缠绕茎是指茎本身缠绕于其他的支柱上升,缠绕的方向有左旋(逆时针方向),如:

牵牛、马兜铃和菜豆等;有右旋(顺时针方向),如:

忍冬等;有的可以左右旋的,称中性缠绕茎,如:

何首乌. 

因此,牵牛是缠绕茎. 

葡萄和丝瓜是属于攀缘茎中的卷须攀缘(攀缘茎还有气生根、叶柄、钩刺和吸盘攀缘另外4种). 

葡萄属于鼠李目的葡萄科,为藤本植物,依靠卷须攀缘. 

丝瓜属于堇菜目的葫芦科,为攀缘草本植物,同葡萄一样,依靠卷须攀缘. 

“新教科书”)第八章“电与磁”第二节“电生磁”的“动手动脑学物理”栏目中的彩色图,都是同一张彩色照片——牵牛花的茎。

“旧教科书”封四中的“封面说明”是:

“这株牵牛花茎的缠绕方向与它的生长方向有什么关系?

”“新教科书”以这张照片提出了这样三个问题:

“观察自然界中缠绕植物的茎和攀援植物的卷须,它们的缠绕方向和生长方向有什么关系?

这跟螺线管中电流的方向与其北极方向的关系是否相同?

对于不同的植物,这种关系都一样吗?

” 

当我在中学第一次面对“旧教科书”时,我不时的纳闷:

编者为什么将这张照片选作封面图?

封四中的“封面说明”针对这一植物照片提出的问题与物理有什么关系?

我对此一直在思考,一直在寻找着答案“新教科书”在学完“电生磁”后,以这张照片提出的以上三个问题。

使我从中得到启发:

牵牛花茎的缠绕方向与它的生长方向的螺旋关系似乎与物理有联系。

特别是与物理学中的“电与磁”联系很大,同时也与我们的日常生活联系很大。

这种关系大到宏观宇宙空间,小到微观世界。

可见,编者独具匠心。

我们只有独具慧眼。

才可略知这张照片中蕴藏着这种螺旋关系的深刻含义。

 

一、自然界中缠绕植物的茎和攀援植物的卷须。

它们的缠绕方向和生长方向有什么关系 

我们日常生活中也常见到一些参天大树,而这些树之所以高大,就是这里我们所要讲的植物的一种器官——茎的发达的缘故,一般乔木类植物都是这种茎。

我们把这种背地面而生的茎叫做直立茎。

然而,植物并不都是直立、高大的,有些植物的茎本身细长而柔软,不能直立只能缠绕在其他物体上向上生长,这种茎叫做缠绕茎。

如牵牛花、金银花的茎。

另外,还有一些植物如黄瓜、葡萄等,它们的茎虽然也是细长柔软的,但它们既不能直立生长,也不能缠绕到别的物体上,可是它们却可以借着茎上生出的卷须盘卷在别的物体上从而使茎向高处生长,这种茎叫做攀援茎。

上面我们所谈的茎都起着连接根和叶的桥梁的作用,并在根和叶之间不停地传送着营养物质。

 

大家都知道,植物的叶子有向光性运动,植物的茎总是向上生长有“负向地性运动”,以便得到阳光而进行光合作用,根总是向下生长有“向地性运动”,以便得到水和肥料,植物的这种向光、向地和负向地性等运动,统称为“向性运动”。

植物之所以会产生向性运动,主要是生长素作用的结果。

攀援植物的卷须和缠绕茎,在接触支持物的一面生长素含量少,生长较慢;而对面含生长素多,生长较快,因此它们就螺旋式地缠绕在支持物上。

 

牵牛花(Ipomoea Nil),别名子午钟、喇叭花、尊金钟。

旋花科。

一年生缠绕茎草本植物,具短毛。

叶为心脏形,通常三裂。

秋季开花,花冠漏斗形,上面有5个浅浅的裂隙,花色有紫红、粉红、白等色。

花期6~10月,一般清晨开放,中午闭合。

原产热带美洲,我国各地普遍栽培供观赏。

性喜阳光,播种一周即可发芽,生长茂盛,分枝多,常种植于庭院、篱边、棚下成绿帘花屏。

种子卵圆形,有黑色、白色,可入药,治水肿腹胀、大小便不利等症。

 

牵牛花的茎缠绕本领非凡,它利用茎尖的“运动”能够依附支架不断向上爬攀。

茎的顶端10cm~15cm一段,由于各个方向的表面生长速度不一致,能在空间不断改变自己的位置,而且始终以一定的方向旋转着,即做有一定方向的“转头运动”,并以此为半径,在其圆周内遇到依附物后,就会把依附物缠绕起来,攀向高处去争取阳光和雨露。

有趣的是,牵牛花(还有扁豆、马兜铃、山药等)向左旋转缠绕而上,其缠绕方向为反时针方向旋转,即它的缠绕方向和生长方向有右手性的规律(历史上达尔文、华莱士等大博物学家、生物学家都观察到攀援植物的手性。

达尔文专门写过《攀援植物的运动和习性》一书,书中描述了42种攀援植物,其中11种是左旋的,这个观察结果和我们今天的观察很接近;而有些植物如金银花、菟丝花、鸡血藤等始终向右旋转,其缠绕方向为顺时针方向旋转,即它的缠绕方向和生长方向有左手性的规律;而何首乌却是“随心所欲”地转头,有时左旋,有时右旋,也就是它的缠绕方向和生长方向是无手性的。

 

那么,有手性的这些缠绕茎植物为什么会有固定的缠绕方向呢?

科学家最新研究表明,植物旋转缠绕的方向特性,是它们各自的祖先遗传下来的本能。

远在亿万年以前,有两种攀援植物的始祖,一种生长在南半球,一种生长在北半球。

为了获得更多的阳光和空间,使其生长发育得更好,它们茎的顶端就随时朝向东升西落的太阳。

这样,生长在南半球植物的茎就向右旋转,生长在北半球植物的茎则向左旋转。

经过漫长的适应、进化过程,它们便退步形成了各自旋转缠绕的固定的方向。

以后,它们虽被移植到不同的地理位置,但其旋转缠绕的方向特性却被遗传下来而固定不变。

而起源于赤道附近的单援植物,由于太阳当空,它们就不需要随太阳转动,因而其缠绕方向没有固定,可随意旋转缠绕。

可见,分清植物的左旋、右旋在实践中具有重要意义。

若错把左旋植物以右旋方式缠绕在支架上,则很快就会自行脱落;若绕的方向与其习性相同,则会缠得更紧,顺利向上攀援,生长发育良好。

 

二、缠绕植物的茎的缠绕方向和生长方向跟螺线管中电流的方向与其北极方向的关系是否相同?

 

“新教科书”在“电生磁”这一节中,首先通过奥斯特实验现象的直观演示,使学生观察到“通电直导线的周围有磁场,磁场的方向跟电流的方向有关”的电磁现象,同时使学生确信电流及其周围的磁场是同时存在而不可分的事实,以建立起电流的磁效应的概念。

然后让学生把导线缠绕成螺线管,从各条导线产生的磁场叠加在一起,磁场就会强得多的实验事实入手,引出问题,让学生自己去探究通电螺线管外部的磁场与哪种磁体相似,接着再探究并总结、表述通电螺线管两极的极性与电流方向之间的关系,以培养学生的空间想象力和表述能力。

之后又让学生实验、探究电磁铁磁性的强弱与哪些因素有关,以培养学生动手动脑的实际应用和研究能力。

笔者认为,在以上教学活动结束之后,并不要求活动的主导者向活动的主体提示或给出安培定则,而是通过学生完成“动手动脑学物理”活动,观察和研究以牵牛花的茎的照片提出的问题。

总结并表述出安培定则的内容:

用右手握住螺旋管,让弯曲的四指指向电流的方向,与四指垂直的大拇指所指的方向就是螺旋管的北极、这是判断通电螺线管磁极的方法,这个方法叫做安培定则。

一孔之见,“新教科书”讲完“电生磁”后,并没有直接给出这一定则,其目的恐怕就是让学生学习手性的概念在物理中的应用,学到螺旋的手性意义的科学知识,通过“动手动脑学物理”,体会、领悟科学的方法——通电螺线管的右手螺旋定则。

同时,让学生认识自然,探索自然的奥秘,还要保护自然,利用自然,使它为人类造福。

可见,新课标教材的“新”,不仅体现在教学目标、知识内容和教材的结构上,更重要的体现在理念上。

它倡导探究式的学习,强调科学与实际、科学与社会的联系。

让学生在有趣的物理学习中,学到科学知识,体验、领悟科学的方法,逐步树立科学的价值观。

 

三、螺旋结构是自然界最普遍的一种形状 

奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。

这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至涡旋星系,小至DNA分子。

都是在这种螺旋线中产生。

然而,为何大自然对螺旋结构如此偏爱呢?

 

从本质上来看,螺旋结构是在一个拥挤的空间,例如一个生物细胞稠密的环境里,长分子链经常采用规则的螺旋状构造,这不仅让信息能够紧密地结合其中,而且能够形成一个表面,允许其他微粒在一定的间隔处与它相结合。

例如,DNA的双螺旋结构允许进行DNA的转录和修复。

采用螺旋结构是受空间的局限,例如DNA由于受到细胞内的空间局限而采用双螺旋结构,就像是公寓由于空间局限而采用螺旋梯的设计一样。

 

在生命科学中,生命遗传物质——脱氧核糖核酸(DNA)的结构多数都是右旋的双螺旋结构。

一些生物,如螺旋形细菌、蔓生植物向上盘绕以及海螺等均以右旋占绝大多数。

 

在粒子世界中,微观粒子的自旋也有左旋和右旋之分。

神奇的超导现象正是由于电子与振动晶格的相互作用使具有相反方向自旋和角动量的电子结成“超导态”而产生的,在这个意义上说,是电子左旋和右旋的合作成就了超导现象。

 

在化学中,有一些化合物,分子的结构不同,化学性质也不同。

如分子结构相对简单的矿物的晶格就有左旋和右旋的。

用眼睛观察它们的结晶体,可明显分辩出晶格的旋向。

比如,左旋分子结构的薄荷脑具有独特的香味,而右旋分子结构的薄荷脑则几乎没有这种香味。

构成味精的谷氨酸钠分子左旋起调味作用,右旋则无调味作用。

 

在药品中,药品名称相同但手性构型不同时,药性也不同。

如四米唑的左旋体是驱蠕虫药,而右旋体是抗抑郁药;甲状腺素钠的左旋体是甲状腺激素,而右旋体是降血脂药;氯霉素分子向右旅有药性,向左旋则无药性;左旋多巴对早期帕金森氏病有效,右旋多巴可引起血和血尿中血红蛋白含量增加。

 

在日常生活中,我们也总会碰到许多的螺旋形物品。

常见的连接件螺栓,它的螺纹多是右旋,螺纹右旋是为了便于右手安装时用力(大多数人为右撇子)。

而绞拧的绳索则多是左旋。

绳索左旋则是因为单股用右手捻,右手捻自然成右旋,并合后就绞成左旋。

 

在气象学中,在北半球,低压区形成左旋的气旋,高压区形成右旋的气旋。

南半球则正好相反。

这是受地球自转影响的原因。

破坏力极大的飓风和龙卷风都是旋转的气流,有的是左旋,有的是右旋。

 

在宇宙中,物质运动必然会产生磁场,天体和磁场是不可分割的整体,只要天体存在,它周围就一定有磁场存在。

各类物质结构由于运动方向的不同,运动速度的差异,会产生无数大小不一、强弱不同的磁场旋涡,这种磁场旋涡就是神秘的“黑洞”。

由于磁场具有力和能的特征,所以“黑洞”虽然构成物质密度很小,但因为它有极快的旋转运动速度,当组成它的物质凝聚向一个方向做有序运动时,便产生很大的能量和极强的引力。

宇宙中一些分散的呈气态的氢、氧类物质和呈固态的硅、铁类尘埃物质,受“黑洞”吸引力作用,在“黑洞”附近运动方向发生变化,向其中心高速旋进,会形成围绕“黑洞”中心运动的圆形气体尘埃环。

国外有报道,哈勃望远镜已拍摄到“黑洞”周围边缘呈翘曲状的尘埃圆盘,这就更形象地证实了“黑洞”的旋涡性质和真实形态以及旋涡多呈漏斗状的特点。

如地球上大气运动产生的热带气旋——“台风”,从卫星图上可以清晰地看到“台风”的圆形旋涡状云团。

还有江河湖海中的水涡流也是圆形旋涡状的,水涡流同样有很大的能量和吸引力,当物体接近时会被吸引进漩涡之中。

 

大自然为何偏爱螺旋形结构,答案就是中学语文中的一篇习文。

 

我爱上了螺旋形 

不知从何年何月开始,我通过观察事物的各种现象,发现自然万物都有自己天然的图形。

为了求生存,很多生物的身体变成最能适应环境的形状。

在千姿百态,纷繁复杂的图形中,最生动、最有魅力的要算螺旋形了。

 

放眼眺望,哪里有生命,哪里有运动,哪里就有螺旋形的身影。

 

透过天文望远镜,我看到浩瀚的银河系是个巨大的螺旋形,螺旋形的中心是恒星最密集的部分,称为银核,银核四周聚集着大量的恒星,构成银盘、银河系在旋转,在运动。

呵,多么壮观的天体运动!

 

站在葡萄架下,乍一看,我以为葡萄的枝条和卷须互相纠缠着,杂乱无章。

但是仔细一看,枝茎上的一条条卷须,都是螺旋形的,它们巧妙地将叶子摆在朝着阳光源的位置上,让其进入充分的光合作用。

螺旋形的卷须呵,扶叶递光,有条不紊。

 

自然界中的螺旋形,奥妙无穷,人间杰出的美术家也望尘莫及。

瞧,公山羊头上螺旋形的犄角,造型何等矫健;暴风把乌云吹成螺旋形,气势何等雄浑;变色龙将长尾巴卷成螺旋形,神态何等悠闲;鹦鹉螺壳上的螺旋彩花纹,结构何等完美;声音从法国号的螺旋形铜管里飘逸而出,音色何等悠扬。

…… 

四、电磁铁

五、电磁继电器 扬声器

1.水位没有到达金属块A时,继电器线圈没有电流通过,它的上面两个触点接触,工作电路中绿灯与电源构成回路,绿灯亮;当水位到达金属块A时,继电器线圈有电流通过,它的下面两个触点接触,工作电路中红灯与电源构成回路,红灯亮。

 

2.温度升高时,水银面上升,当水银面上升到与金属丝接触时,电磁铁线圈就有电流流过,产生磁性吸引触点开关使之闭合,这时工作电路就形成了一个回路,电铃就响起来了。

 

3.接通电源后,电磁铁吸引衔铁,敲击铃碗发声,但同时铃碗与螺钉分离,通过线圈的电路断开,电磁铁失去磁性,衔铁由于弹性回到初始位置,这时铃碗与螺钉又接触,线圈的电路闭合,电磁铁又吸引衔铁,敲击铃碗发声……,如此往复,电铃就不断发出

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2