基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx

上传人:b****6 文档编号:13096166 上传时间:2023-06-11 格式:DOCX 页数:14 大小:64.94KB
下载 相关 举报
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第1页
第1页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第2页
第2页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第3页
第3页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第4页
第4页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第5页
第5页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第6页
第6页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第7页
第7页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第8页
第8页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第9页
第9页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第10页
第10页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第11页
第11页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第12页
第12页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第13页
第13页 / 共14页
基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx

《基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx》由会员分享,可在线阅读,更多相关《基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx(14页珍藏版)》请在冰点文库上搜索。

基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉.docx

基于模糊逻辑控制的反应釜温度控制系统外文文献翻译英译汉

外文文献

FuzzyLogicControlSystemforCSTRTemperatureControl

MOLOYDUTTA,VAIBHAVBAPAT,SCACHINSHELAKE,TUSHARACHYUT&PROF.A.D.SONAR

ABSTRACT

Closedloopcontrolsystemincorporatingfuzzylogichasbeendevelopedforaclassofindustrialtemperaturecontrolproblem.Auniquefuzzylogiccontroller(FLC)structurewithanefficientrealizationandasmallrulebasethatcanbeeasilyimplementedinexistingindustrialcontrollerswasproposed.Itwasdemonstratedinbothsoftwaresimulationandhardwaretestinanindustrialsettingthatthefuzzylogiccontroller(FLC)ismuchmorecapablethanthecurrenttemperaturecontroller.Thisincludescompensatingforthermomasschangesinthesystem,dealingwithunknownandvariabledelays,operatingatverydifferenttemperaturesetpointswithoutreturningetc.Itisachievedbyimplementing,inFLC,aclassicalcontrolstrategyandanadaptationmechanismtocompensateforthedynamicchangesinthesystem.TheproposedFLCwasappliedtotemperaturecontrolofcontinuouslystirredtankreactor(CSTR)andsignificantimprovementsinthesystemperformanceareobserved.

INTRODUCTION

Whilemoderncontroltheoryhasmademodestinroadintopractice,fuzzylogiccontrolhasbeenrapidlygainingpopularityamongpracticingengineers.Thisincreasedpopularitycanbeattributedtothefactthatfuzzylogiccontrolprovidesapowerfulvehiclethatallowsengineerstoincorporatehumanreasoninginthecontrolalgorithm.Asopposedtomoderncontroltheory,fuzzylogicdesignisnotbasedonthemathematicalmodeloftheprocess.

Thecontrollerdesignedusingfuzzylogicimplementshumanreasoningthathasbeenprogrammedintofuzzylogiclanguage(membershipfunctions,ruleandtheruleinterpretation).

Itisinterestingtonotethatthesuccessoffuzzylogiccontrolislargelyduetoawarenesstoitsmanyindustrialapplications.Industrialinterestsinfuzzylogiccontrolasevidencedbythemanypublicationsonthesubjectinthecontrolliteraturehavecreatedawarenessofitsincreasingimportancebytheacademiccommunity.Theresearchresultsoverthelastfewyearshavebeenreportedin[2-4].

Inthispaper,weconcentrateonfuzzylogiccontrolasanalternativecontrolstrategytothecurrentproportion-integral-derivative(PID)methodusedwidelyinindustry.ConsideratypicaltemperaturecontrolapplicationshowninFigure1:

Figure1:

AtypicalTemperatureControl

ThetemperatureismeasuredbyasuitablesensorsuchasThermocouples,Resistancetemperaturedetector,Thermistors,etcandconvertedtoasignalacceptabletothecontroller.Thecontrollercomparesthetemperaturesignaltothedesiredsetpointtemperatureandactuatesthecontrolelement.Thecontrolelementaltersthemanipulatedvariabletochangethequantityofheatbeingaddedtoortakenfromtheprocess.Theobjectiveofthecontrolleristoregulatethetemperatureascloseaspossibletothesetpoint.

PROBLEMUNDERSTUDY

Currently,theclassicalPID(proportional,integral,derivative)controliswidelyusedwithitsgainsmanuallytuned,basedonthethermalmassandthetemperaturesetpoint.EquipmentwithlargethermalcapacitiesrequiredifferentPIDgainsthanequipmentwithsmallthermalcapacities.

Inaddition,equipmentoperationoverwiderangesoftemperature(140to500degrees),forexample,requiresdifferentgainsatthelowerandhigherendofthetemperaturerangetoavoidovershootsandoscillations.Thisisnecessarysinceevenbrieftemperatureovershootsinitiatenuisancealarmsandcostlyshutdownstotheprocessbeingcontrolled.

Generally,tuningthePIDconstantsforalargetemperaturecontrolprocessiscostlyandtime-consuming.ThetaskisfurthercomplicatedwhenincorrectPIDconstantsaresometimesenteredduetolackofunderstandingoftemperaturecontrolprocess[1].

Thedifficultyindealingwithsuchproblemsiscompoundedwithvariabletimedelaysexistinginmanysuchsystems.Variationsinmanufacturing,newproductdevelopmentandphysicalconstraintsplacetheResistanceTemperatureDetector(RTD)temperaturesensoratdifferentlocations,includingvariabletimedelay(deadtime)inthesystem.

ItisalsowellknownthatPIDcontrollersexhibitpoorperformancewhenappliedtosystemscontainingunknownnonlinearitysuchasdeadzones,saturationandhysteresis.

Itisfurtherunderstoodthatmanytemperaturecontrolprocessarenonlinear.Equalincrementsofheatinput,forexample,donotnecessarilyproduceequalincrementsintemperatureriseinmanyprocesses,atypicalphenomenonofnonlinearsystems.

FUZZYLOGICCONTROL

Fuzzylogiccontrolisanappealingalternativetoconventionalcontrolmethodswhensystemsfollowsomegeneraloperatingcharacteristicsanddetailedprocessunderstandingisunknownortraditionalsystemmodelbecomeoverlycomplex[1,a].Themainfeatureoffuzzycontrolisthecapabilitytoqualitativelycapturetheattributesofacontrolsystembasedonobservablephenomenon[a,b].

FuzzyLogicControlDesign

TheFLCdevelopedhereisatwo-inputandsingle-outputcontroller.Theinputsarethedeviationfromsetpointerror,e(k)anderrorrate,∆e(k).TheoperationalstructureofthefuzzycontrollerisshowninFigure2:

Figure2:

StructureofFuzzyController

Fuzzification

Fuzzificationinvolvesmappingthefuzzyvariablesofintereststo“crisp”numbersusedbythecontrolsystem.Fuzzificationtranslatesanumbericvaluefortheerror,e(k),orerrorrate,∆e(k),intoalinguisticvaluesuchaspositivelargewithamembershipgrade.

TheFLCmembershipfunctionsaredefinedovertherangeofinputandoutputvariablevaluesandlinguisticallydescribesthevariable’suniverseofdiscourseasshowninFigures3、4、5.

Figure3:

MembershipFunctionforError(e)

Figure4:

MembershipFunctionforChangeinError(∆e)

Figure5:

ChangeinOutput(inwant)

TABLE1

FLCCONTROLRULES

e(k)

∆e(k)

NB

NM

NS

ZO

PS

PM

PB

NB

NB

NS

ZO

PB

PB

PB

PB

NM

NB

NS

PB

PB

PB

PB

PB

NS

NB

NS

PB

PB

PB

PB

PB

ZO

NM

NS

PB

PB

PB

PB

PB

PS

NM

ZO

PB

PB

PB

PB

PB

PM

NS

ZO

PB

PB

PB

PB

PB

PB

NS

ZO

PB

PB

PB

PB

PB

Herethetemperaturerangeisfrom0~100℃.Thevalueofmembershipfunctionoferrorvariesfrom-5to75℃andfortheerrorchangeis-5to0℃.

Thetriangularinputmembershipfunctionsforthelinguisticlabelszero,small,mediumandlarge.Theleftandrighthalfofthetriangularforeachlinguisticlabelissochosenthatmembershipoverlapwithadjacentmembershipfunctions.

Theoutputmembershipfunctionsforthelabelsarezero,small,mediumandlarge.Boththeinputandoutputvariablesmembershipfunctionsaresymmetricwithrespecttotheorigin.Selectionofthenumberofmembershipfunctionsandtheirinitialvaluesarebasedonprocessknowledgeandintuition.Themainideaistodefinepartitionofoperatingregionsthatwillrepresenttheprocessvariables.

Rulesdevelopment

Rulesdevelopmentstrategyforsystemswithtimedelayistoregulatetheoverallloopgaintoachievethedesiredstepresponse.TheoutputoftheFLCisbasedonthecurrentinpute(k)and∆e(k),andwithoutanyknowledgeofthepreviousinputandoutputdata.TherulesdevelopedinthispaperforCSTRareabletocompensateforvaryingtimedelaysonlinebytuningtheFLCoutputmembershipfunctionsbasedonsystemperformance.TheTable1showshowrulesarerepresentedforCSTR[8].

Defuzzification

Defuzzificationtakesthefuzzyoutputoftherulesandgeneratesa“crisp”numbericvalueuseascontrolinputtoplant.

Tuningofmembershipfunction

Themembershipfunctionssubjecttothestabilitycriteriabasedonobservationsofsystemperformancesuchasrisetime,overshoot,steadystateerror.Accordingtotheresolutionneeded,numberofmembershipfunctionincreases.Thecenterandslopesoftheinputmembershipfunctionsineachregionisadjustedsothatthecorrespondingruleprovidesanappropriatecontrolaction.Incasewhentwoormorerulesarefiredatthesametime,thedominantruleistunedfirst.Onceinputmembershipruletuningiscompleted,fine-tuningofoutput,membershipfunctionisperformed.

APPLICATION

CSTRtemperaturecontrolhardwaresetup

AloseloopdiagramoftheprocessisshowninFigure6:

Figure6:

Closed-loopTemperatureControlSystem

Inthispaper,theapplicationoffuzzylogicistocontrolthetemperatureofwater.ForsensingthetemperatureRTD(ResistanceTemperatureDetector)isusedassensor.Therearemanyvariationsinthedynamicsofthesystem.Thethermocapacityisproportionaltothesizeofthetank.ThetimedelayinthesystemisquitesensitivetotheplacementoftheRTD.TheRTDsensesthetemperatureofwaterandgivethesignaltotheFLC(FuzzyLogicController)anditcalculatesthe“crisp”value.Dependinguponon“crisp”value,firingangleofSCR(SiliconControlledRectifier)ischangingandeventuallycontrolthepowersuppliedtotheheaterthroughinterfacingcard.

TESTRESULTS

Intemperaturecontrolapplication,itisimportanttopreventovershoots,whichseriouslyaffectthesystemperformance.Itisalsodesirabletohaveasmoothcontrolsignalthatdoesnotrequireexcessiveonandoffactionsintheheater.TheresultsareshownintheFigure7.Ineachcase,theFLCwasabletosuccessfullymeetalldesignspecificationswithoutoperatortuning.

Figure7:

ProcessResponse

CONCLUSION

Fuzzyprovidesaremarkablysimplewaytodrawdefiniteconclusionsfromvague,ambiguous,impreciseinformation.Inasense,fuzzylogicresembleshumandecisionmakingwithitsabilitytoworkfromapproximatedataandfindprecisesolution.Theresultsshowsignificantimprovementinmaintainingperformanc

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2