fluent中多孔介质设置问题和算例之欧阳育创编.docx

上传人:b****1 文档编号:13316476 上传时间:2023-06-13 格式:DOCX 页数:12 大小:31.29KB
下载 相关 举报
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第1页
第1页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第2页
第2页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第3页
第3页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第4页
第4页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第5页
第5页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第6页
第6页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第7页
第7页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第8页
第8页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第9页
第9页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第10页
第10页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第11页
第11页 / 共12页
fluent中多孔介质设置问题和算例之欧阳育创编.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

fluent中多孔介质设置问题和算例之欧阳育创编.docx

《fluent中多孔介质设置问题和算例之欧阳育创编.docx》由会员分享,可在线阅读,更多相关《fluent中多孔介质设置问题和算例之欧阳育创编.docx(12页珍藏版)》请在冰点文库上搜索。

fluent中多孔介质设置问题和算例之欧阳育创编.docx

fluent中多孔介质设置问题和算例之欧阳育创编

经过痛苦的一段经历,终于将局部问题真相大白,为了使保位同仁不再经过我之痛苦,现在将本人多孔介质经验公布如下,希望各位能加精:

时间:

2021.02.04

创作:

欧阳育

1。

Gambit中划分网格之后,定义需要做为多孔介质的区域为fluid,与缺省的fluid分别开来,再定义其名称,我习惯将名称定义为porous;

2。

在fluent中定义边界条件define-boundarycondition-porous(刚定义的名称),将其设置边界条件为fluid,点击set按钮即弹出与fluid边界条件一样的对话框,选中porouszone与laminar复选框,再点击porouszone标签即出现一个带有滚动条的界面;

3。

porouszone设置方法:

1)定义矢量:

二维定义一个矢量,第二个矢量方向不用定义,是与第一个矢量方向正交的;

             三维定义二个矢量,第三个矢量方向不用定义,是与第一、二个矢量方向正交的;

(如何知道矢量的方向:

打开grid图,看看X,Y,Z的方向,如果是X向,矢量为1,0,0,同理Y向为0,1,0,Z向为0,0,1,如果所需要的方向与坐标轴正向相反,则定义矢量为负)

圆锥坐标与球坐标请参考fluent帮助。

2)定义粘性阻力1/a与内部阻力C2:

请参看本人上一篇博文“终于搞清fluent中多孔粘性阻力与内部阻力的计算方法”,此处不赘述;

3)如果了定义粘性阻力1/a与内部阻力C2,就不用定义C1与C0,因为这是两种不同的定义方法,C1与C0只在幂率模型中出现,该处保持默认就行了;

4)定义孔隙率porousity,默认值1表示全开放,此值按实验测值填写即可。

完了,其他设置与普通k-e或RSM相同。

总结一下,与君共享!

Tutorial7.ModelingFlowThroughPorousMedia

Introduction

Manyindustrialapplicationsinvolvethemodelingofflowthroughporousmedia,suchasfilters,catalystbeds,andpacking.Thistutorialillustrateshowtosetupandsolveaprobleminvolvinggasflowthroughporousmedia.

Theindustrialproblemsolvedhereinvolvesgasflowthroughacatalyticconverter.Catalyticconvertersarecommonlyusedtopurifyemissionsfromgasolineanddieselenginesbyconvertingenvironmentallyhazardousexhaustemissionstoacceptablesubstances.

Examplesofsuchemissionsincludecarbonmonoxide(CO),nitrogenoxides(NOx),andunburnedhydrocarbonfuels.Theseexhaustgasemissionsareforcedthroughasubstrate,whichisaceramicstructurecoatedwithametalcatalystsuchasplatinumorpalladium.

Thenatureoftheexhaustgasflowisaveryimportantfactorindeterminingtheperformanceofthecatalyticconverter.Ofparticularimportanceisthepressuregradientandvelocitydistributionthroughthesubstrate.HenceCFDanalysisisusedtodesignefficientcatalyticconverters:

bymodelingtheexhaustgasflow,thepressuredropandtheuniformityofflowthroughthesubstratecanbedetermined.Inthistutorial,FLUENTisusedtomodeltheflowofnitrogengasthroughacatalyticconvertergeometry,sothattheflowfieldstructuremaybeanalyzed.

Thistutorialdemonstrateshowtodothefollowing:

_Setupaporouszoneforthesubstratewithappropriateresistances.

_Calculateasolutionforgasflowthroughthecatalyticconverterusingthepressurebasedsolver.

_Plotpressureandvelocitydistributiononspecifiedplanesofthegeometry.

_Determinethepressuredropthroughthesubstrateandthedegreeofnon-uniformityofflowthroughcrosssectionsofthegeometryusingX-Yplotsandnumericalreports.

ProblemDescription

ThecatalyticconvertermodeledhereisshowninFigure7.1.Thenitrogenflowsinthroughtheinletwithauniformvelocityof22.6m/s,passesthroughaceramicmonolithsubstratewithsquareshapedchannels,andthenexitsthroughtheoutlet.

Whiletheflowintheinletandoutletsectionsisturbulent,theflowthroughthesubstrateislaminarandischaracterizedbyinertialandviscouslosscoefficientsintheflow(X)direction.Thesubstrateisimpermeableinotherdirections,whichismodeledusinglosscoefficientswhosevaluesarethreeordersofmagnitudehigherthanintheXdirection.

SetupandSolution

Step1:

Grid

1.Readthemeshfile(catalyticconverter.msh).

File/Read/Case...

2.Checkthegrid.Grid/Check

FLUENTwillperformvariouschecksonthemeshandreporttheprogressintheconsole.Makesurethattheminimumvolumereportedisapositivenumber.

3.Scalethegrid.

Grid!

Scale...

(a)SelectmmfromtheGridWasCreatedIndrop-downlist.

(b)ClicktheChangeLengthUnitsbutton.Alldimensionswillnowbeshowninmillimeters.

(c)ClickScaleandclosetheScaleGridpanel.

4.Displaythemesh.Display/Grid...

(a)Makesurethatinlet,outlet,substrate-wall,andwallareselectedintheSurfacesselectionlist.

(b)ClickDisplay.

(c)RotatetheviewandzoomintogetthedisplayshowninFigure7.2.

(d)ClosetheGridDisplaypanel.

Thehexmeshonthegeometrycontainsatotalof34,580cells.

Step2:

Models

1.Retainthedefaultsolversettings.Define/Models/Solver...

2.Selectthestandardk-εturbulencemodel.Define/Models/Viscous...

Step3:

Materials

1.AddnitrogentothelistoffluidmaterialsbycopyingitfromtheFluentDatabaseformaterials.Define/Materials...

(a)ClicktheFluentDatabase...buttontoopentheFluentDatabaseMaterialspanel.

i.Selectnitrogen(n2)fromthelistofFluentFluidMaterials.

ii.ClickCopytocopytheinformationfornitrogentoyourlistoffluidmaterials.

iii.ClosetheFluentDatabaseMaterialspanel.

(b)ClosetheMaterialspanel.

Step4:

BoundaryConditions.Define/BoundaryConditions...

1.Settheboundaryconditionsforthefluid(fluid).

(a)SelectnitrogenfromtheMaterialNamedrop-downlist.

(b)ClickOKtoclosetheFluidpanel.

2.Settheboundaryconditionsforthesubstrate(substrate).

(a)SelectnitrogenfromtheMaterialNamedrop-downlist.

(b)EnablethePorousZoneoptiontoactivatetheporouszonemodel.

(c)EnabletheLaminarZoneoptiontosolvetheflowintheporouszonewithoutturbulence.

(d)ClickthePorousZonetab.

i.MakesurethattheprincipaldirectionvectorsaresetasshowninTable7.1.Usethescrollbartoaccessthefieldsthatarenotinitiallyvisibleinthepanel.

ii.EnterthevaluesinTable7.2fortheViscousResistanceandInertialResistance.Scrolldowntoaccessthefieldsthatarenotinitiallyvisibleinthepanel.

(e)ClickOKtoclosetheFluidpanel.

3.Setthevelocityandturbulenceboundaryconditionsattheinlet(inlet).

(a)Enter22.6m/sfortheVelocityMagnitude.

(b)SelectIntensityandHydraulicDiameterfromtheSpecificationMethoddropdownlistintheTurbulencegroupbox.

(c)Retainthedefaultvalueof10%fortheTurbulentIntensity.

(d)Enter42mmfortheHydraulicDiameter.

(e)ClickOKtoclosetheVelocityInletpanel.

4.Settheboundaryconditionsattheoutlet(outlet).

(a)Retainthedefaultsettingof0forGaugePressure.

(b)SelectIntensityandHydraulicDiameterfromtheSpecificationMethoddropdownlistintheTurbulencegroupbox.

(c)Enter5%fortheBackflowTurbulentIntensity.

(d)Enter42mmfortheBackflowHydraulicDiameter.

(e)ClickOKtoclosethePressureOutletpanel.

5.Retainthedefaultboundaryconditionsforthewalls(substrate-wallandwall)andclosetheBoundaryConditionspanel.

Step5:

Solution

1.Setthesolutionparameters.Solve/Controls/Solution...

(a)RetainthedefaultsettingsforUnder-RelaxationFactors.

(b)SelectSecondOrderUpwindfromtheMomentumdrop-downlistintheDiscretizationgroupbox.

(c)ClickOKtoclosetheSolutionControlspanel.

2.Enabletheplottingofresidualsduringthecalculation.Solve/Monitors/Residual...

(a)EnablePlotintheOptionsgroupbox.

(b)ClickOKtoclosetheResidualMonitorspanel.

3.Enabletheplottingofthemassflowrateattheoutlet.

Solve/Monitors/Surface...

(a)SettheSurfaceMonitorsto1.

(b)EnablethePlotandWriteoptionsformonitor-1,andclicktheDefine...buttontoopentheDefineSurfaceMonitorpanel.

i.SelectMassFlowRatefromtheReportTypedrop-downlist.

ii.SelectoutletfromtheSurfacesselectionlist.

iii.ClickOKtoclosetheDefineSurfaceMonitorspanel.

(c)ClickOKtoclosetheSurfaceMonitorspanel.

4.Initializethesolutionfromtheinlet.Solve/Initialize/Initialize...

(a)SelectinletfromtheComputeFromdrop-downlist.

(b)ClickInitandclosetheSolutionInitializationpanel.

5.Savethecasefile(catalyticconverter.cas).File/Write/Case...

6.Runthecalculationbyrequesting100iterations.Solve/Iterate...

(a)Enter100fortheNumberofIterations.

(b)ClickIterate.

TheFLUENTcalculationwillconvergeinapproximately70iterations.Bythispointthemassflowratemonitorhasattendedout,asseeninFigure7.3.

(c)ClosetheIteratepanel.

7.Savethecaseanddatafiles(catalyticconverter.casandcatalyticconverter.dat).

File/Write/Case&Data...

Note:

Ifyouchooseafilenamethatalreadyexistsinthecurrentfolder,FLUENT

willpromptyouforconfirmationtooverwritethefile.

Step6:

Post-processing

1.Createasurfacepassingthroughthecenterlineforpost-processingpurposes.

Surface/Iso-Surface...

(a)SelectGrid...andY-CoordinatefromtheSurfaceofConstantdrop-downlists.

(b)ClickComputetocalculatetheMinandMaxvalues.

(c)Retainthedefaultvalueof0fortheIso-Values.

(d)Entery=0fortheNewSurfaceName.

(e)ClickCreate.

2.Createcross-sectionalsurfacesatlocationsoneithersideofthesubstrate,aswellasatitscenter.

Surface/Iso-Surface...

(a)SelectGrid...andX-CoordinatefromtheSurfaceofConstantdrop-downlists.

(b)ClickComputetocalculatetheMinandMaxvalues.

(c)Enter95forIso-Values.

(d)Enterx=95fortheNewSurfaceName.

(e)ClickCreate.

(f)Inasimilarmanner,createsurfacesnamedx=130andx=165withIso-Valuesof130and165,respectively.ClosetheIso-Surfacepanelafterallthesurfaceshavebeencreated.

3.Createalinesurfaceforthecenterlineoftheporousmedia.

Surface/Line/Rake...

(a)EnterthecoordinatesofthelineunderEndPoints,usingthestartingcoordinateof(95,0,0)andanendingcoordinateof(165,0,0),asshown.

(b)Enterporous-clfortheNewSurfaceName.

(c)ClickCreatetocreatethesurface.

(d)ClosetheLine/RakeSurfacepanel.

4.Displaythetwowallzones(substrate-wallandwall).Display/Grid...

(a)DisabletheEdgesoption.

(b)EnabletheFacesoption.

(c)DeselectinletandoutletinthelistunderSurfaces,andmakesurethatonlysubstrate-wallandwallareselected.

(d)ClickDisplayandclosetheGridDisplaypanel.

(e)RotatetheviewandzoomsothatthedisplayissimilartoFigure7.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2