fluent中多孔介质模型的设置.docx

上传人:wj 文档编号:1216273 上传时间:2023-04-30 格式:DOCX 页数:31 大小:86.74KB
下载 相关 举报
fluent中多孔介质模型的设置.docx_第1页
第1页 / 共31页
fluent中多孔介质模型的设置.docx_第2页
第2页 / 共31页
fluent中多孔介质模型的设置.docx_第3页
第3页 / 共31页
fluent中多孔介质模型的设置.docx_第4页
第4页 / 共31页
fluent中多孔介质模型的设置.docx_第5页
第5页 / 共31页
fluent中多孔介质模型的设置.docx_第6页
第6页 / 共31页
fluent中多孔介质模型的设置.docx_第7页
第7页 / 共31页
fluent中多孔介质模型的设置.docx_第8页
第8页 / 共31页
fluent中多孔介质模型的设置.docx_第9页
第9页 / 共31页
fluent中多孔介质模型的设置.docx_第10页
第10页 / 共31页
fluent中多孔介质模型的设置.docx_第11页
第11页 / 共31页
fluent中多孔介质模型的设置.docx_第12页
第12页 / 共31页
fluent中多孔介质模型的设置.docx_第13页
第13页 / 共31页
fluent中多孔介质模型的设置.docx_第14页
第14页 / 共31页
fluent中多孔介质模型的设置.docx_第15页
第15页 / 共31页
fluent中多孔介质模型的设置.docx_第16页
第16页 / 共31页
fluent中多孔介质模型的设置.docx_第17页
第17页 / 共31页
fluent中多孔介质模型的设置.docx_第18页
第18页 / 共31页
fluent中多孔介质模型的设置.docx_第19页
第19页 / 共31页
fluent中多孔介质模型的设置.docx_第20页
第20页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

fluent中多孔介质模型的设置.docx

《fluent中多孔介质模型的设置.docx》由会员分享,可在线阅读,更多相关《fluent中多孔介质模型的设置.docx(31页珍藏版)》请在冰点文库上搜索。

fluent中多孔介质模型的设置.docx

7.19.6UserInputsforPorousMedia

Whenyouaremodelingaporousregion,theonlyadditionalinputsfortheproblemsetupareasfollows.Optionalinputsareindicatedassuch.

1.  Definetheporouszone.

2.  Definetheporousvelocityformulation.(optional)

3.  Identifythefluidmaterialflowingthroughtheporousmedium.

4.  Enablereactionsfortheporouszone,ifappropriate,andselectthereactionmechanism.

5.  Enablethe RelativeVelocityResistanceFormulation.Bydefault,thisoptionisalreadyenabledandtakesthemovingporousmediaintoconsideration(asdescribedinSection  7.19.6).

6.  Settheviscousresistancecoefficients(  inEquation  7.19-1,or  inEquation  7.19-2)andtheinertialresistancecoefficients(  inEquation 7.19-1,or  inEquation  7.19-2),anddefinethedirectionvectorsforwhichtheyapply.Alternatively,specifythecoefficientsforthepower-lawmodel.

7.  Specifytheporosityoftheporousmedium.

8.  Selectthematerialcontainedintheporousmedium(requiredonlyformodelsthatincludeheattransfer).Notethatthespecificheatcapacity, ,fortheselectedmaterialintheporouszonecanonlybeenteredasaconstantvalue.

9.  Setthevolumetricheatgenerationrateinthesolidportionoftheporousmedium(oranyothersources,suchasmassormomentum).(optional)

10.  Setanyfixedvaluesforsolutionvariablesinthefluidregion(optional).

11.  Suppresstheturbulentviscosityintheporousregion,ifappropriate.

12.  Specifytherotationaxisand/orzonemotion,ifrelevant.

Methodsfordeterminingtheresistancecoefficientsand/orpermeabilityarepresentedbelow.Ifyouchoosetousethepower-lawapproximationoftheporous-mediamomentumsourceterm,youwillenterthecoefficients  and  inEquation  7.19-3 insteadoftheresistancecoefficientsandflowdirection.

Youwillsetallparametersfortheporousmediuminthe Fluid panel (Figure  7.19.1),whichisopenedfromthe BoundaryConditions panel (asdescribedinSection 7.1.4).

Figure7.19.1:

 The Fluid PanelforaPorousZone

DefiningthePorousZone

AsmentionedinSection  7.1,aporouszoneismodeledasaspecialtypeoffluidzone.Toindicatethatthefluidzoneisaporousregion,enablethe PorousZoneoptioninthe Fluid panel.Thepanelwillexpandtoshowtheporousmediainputs(asshowninFigure  7.19.1).

DefiningthePorousVelocityFormulation

The Solver panelcontainsa PorousFormulation regionwhereyoucaninstruct FLUENT touseeitherasuperficialorphysicalvelocityintheporousmediumsimulation.Bydefault,thevelocityissetto SuperficialVelocity.Fordetailsaboutusingthe PhysicalVelocity formulation,seeSection  7.19.7.

DefiningtheFluidPassingThroughthePorousMedium

Todefinethefluidthatpassesthroughtheporousmedium,selecttheappropriatefluidinthe MaterialName drop-downlistinthe Fluid panel.Ifyouwanttocheckormodifythepropertiesoftheselectedmaterial,youcanclick Edit... toopenthe Material panel;thispanelcontainsjustthepropertiesoftheselectedmaterial,notthefullcontentsofthestandard Materials panel.

  

Ifyouaremodelingspeciestransportormultiphaseflow,the MaterialName listwillnotappearinthe Fluid panel.Forspeciescalculations,themixturematerialforallfluid/porouszoneswillbethematerialyouspecifiedinthe SpeciesModel panel.Formultiphaseflows,thematerialsarespecifiedwhenyoudefinethephases,asdescribedinSection  23.10.3.

EnablingReactionsinaPorousZone

Ifyouaremodelingspeciestransportwithreactions,youcanenablereactionsinaporouszonebyturningonthe Reaction optioninthe Fluid panelandselectingamechanisminthe ReactionMechanism drop-downlist.

Ifyourmechanismcontainswallsurfacereactions,youwillalsoneedtospecifyavalueforthe Surface-to-VolumeRatio.Thisvalueisthesurfaceareaoftheporewallsperunitvolume( ),andcanbethoughtofasameasureofcatalystloading.Withthisvalue, FLUENT cancalculatethetotalsurfaceareaonwhichthereactiontakesplaceineachcellbymultiplying  bythevolumeofthecell.SeeSection  14.1.4 fordetailsaboutdefiningreactionmechanisms.SeeSection  14.2fordetailsaboutwallsurfacereactions.

IncludingtheRelativeVelocityResistanceFormulation

Priorto FLUENT 6.3,caseswithmovingreferenceframesusedtheabsolutevelocitiesinthesourcecalculationsforinertialandviscousresistance.Thisapproachhasbeenenhancedsothatrelativevelocitiesareusedfortheporoussourcecalculations(Section  7.19.2).Usingthe RelativeVelocityResistanceFormulationoption(turnedonbydefault)allowsyoutobetterpredictthesourcetermsforcasesinvolvingmovingmeshesormovingreferenceframes(MRF).Thisoptionworkswellincaseswithnon-movingandmovingporousmedia.Notethat FLUENT willusetheappropriatevelocities(relativeorabsolute),dependingonyourcasesetup.

DefiningtheViscousandInertialResistanceCoefficients

Theviscousandinertialresistancecoefficients arebothdefinedinthesamemanner.ThebasicapproachfordefiningthecoefficientsusingaCartesiancoordinatesystemistodefineonedirectionvectorin2Dortwodirectionvectorsin3D,andthenspecifytheviscousand/orinertialresistancecoefficientsineachdirection.In2D,theseconddirection,whichisnotexplicitlydefined,isnormaltotheplanedefinedbythespecifieddirectionvectorandthe  directionvector.In3D,thethirddirectionisnormaltotheplanedefinedbythetwospecifieddirectionvectors.Fora3Dproblem,theseconddirectionmustbenormaltothefirst.Ifyoufailtospecifytwonormaldirections,thesolverwillensurethattheyarenormalbyignoringanycomponentoftheseconddirectionthatisinthefirstdirection.Youshouldthereforebecertainthatthefirstdirectioniscorrectlyspecified.

Youcanalsodefinetheviscousand/orinertialresistancecoefficientsineachdirectionusingauser-definedfunction(UDF).Theuser-definedoptionsbecomeavailableinthecorrespondingdrop-downlistwhentheUDFhasbeencreatedandloadedinto FLUENT.NotethatthecoefficientsdefinedintheUDFmustutilizetheDEFINE_PROFILE macro.Formoreinformationoncreatingandusinguser-definedfunction,seetheseparateUDFManual.

Ifyouaremodelingaxisymmetricswirlingflows,youcanspecifyanadditionaldirectioncomponentfortheviscousand/orinertialresistancecoefficients.Thisdirectioncomponentisalwaystangentialtotheothertwospecifieddirections.Thisoptionisavailableforbothdensity-basedandpressure-basedsolvers.

In3D,itisalsopossibletodefinethecoefficientsusingaconical(orcylindrical)coordinatesystem,asdescribedbelow.

   

Notethattheviscousandinertialresistancecoefficientsaregenerallybasedonthesuperficialvelocityofthefluidintheporousmedia.

Theprocedurefordefiningresistancecoefficientsisasfollows:

1.  Definethedirectionvectors.

·TouseaCartesiancoordinatesystem,simplyspecifythe Direction-1Vector and,for3D,the Direction-2Vector.Theunspecifieddirectionwillbedeterminedasdescribedabove.Thesedirectionvectorscorrespondtotheprincipleaxesoftheporousmedia.

Forsomeproblemsinwhichtheprincipalaxesoftheporousmediumarenotalignedwiththecoordinateaxesofthedomain,youmaynotknowapriorithedirectionvectorsoftheporousmedium.Insuchcases,theplanetoolin3D(orthelinetoolin2D)canhelpyoutodeterminethesedirectionvectors.

(a)  "Snap''theplanetool(orthelinetool)ontotheboundaryoftheporousregion.(FollowtheinstructionsinSection  27.6.1 or 27.5.1 forinitializingthetooltoapositiononanexistingsurface.)

(b)  Rotatetheaxesofthetoolappropriatelyuntiltheyarealignedwiththeporousmedium.

(c)  Oncetheaxesarealigned,clickonthe UpdateFromPlaneTool or UpdateFromLineTool buttoninthe Fluid panel. FLUENT willautomaticallysettheDirection-1Vector tothedirectionoftheredarrowofthetool,and(in3D)the Direction-2Vector tothedirectionofthegreenarrow.

·Touseaconicalcoordinatesystem(e.g.,foranannular,conicalfilterelement),followthestepsbelow.Thisoptionisavailableonlyin3Dcases.

(a)  Turnonthe Conical option.

(b)  Specifythe ConeAxisVector and PointonConeAxis.Theconeaxisisspecifiedasbeinginthedirectionofthe ConeAxisVector (unitvector),andpassingthroughthe PointonConeAxis.Theconeaxismayormaynotpassthroughtheoriginofthecoordinatesystem.

(c)  Setthe ConeHalfAngle (theanglebetweenthecone'saxisanditssurface,showninFigure  7.19.2).Touseacylindricalcoordinatesystem,settheConeHalfAngle to0.

Figure7.19.2:

 ConeHalfAngle

Forsomeproblemsinwhichtheaxisoftheconicalfilterelementisnotalignedwiththecoordinateaxesofthedomain,youmaynotknowapriorithedirectionvectoroftheconeaxisandcoordinatesofapointontheconeaxis.Insuchcases,theplanetoolcanhelpyoutodeterminetheconeaxisvectorandpointcoordinates.Onemethodisasfollows:

(a)  Selectaboundaryzoneoftheconicalfilterelementthatisnormaltotheconeaxisvectorinthedrop-downlistnexttothe SnaptoZone button.

(b)  Clickonthe SnaptoZone button. FLUENT willautomatically"snap''theplanetoolontotheboundary.Itwillalsosetthe ConeAxisVector andthePointonConeAxis.(Notethatyouwillstillhavetosetthe ConeHalfAngle yourself.)

Analternatemethodisasfollows:

(a)  "Snap''theplanetoolontotheboundaryoftheporousregion.(FollowtheinstructionsinSection  27.6.1 forinitializingthetooltoapositiononanexistingsurface.)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2