重油催化裂解生产烯烃技术.docx

上传人:b****6 文档编号:13592727 上传时间:2023-06-15 格式:DOCX 页数:31 大小:51.61KB
下载 相关 举报
重油催化裂解生产烯烃技术.docx_第1页
第1页 / 共31页
重油催化裂解生产烯烃技术.docx_第2页
第2页 / 共31页
重油催化裂解生产烯烃技术.docx_第3页
第3页 / 共31页
重油催化裂解生产烯烃技术.docx_第4页
第4页 / 共31页
重油催化裂解生产烯烃技术.docx_第5页
第5页 / 共31页
重油催化裂解生产烯烃技术.docx_第6页
第6页 / 共31页
重油催化裂解生产烯烃技术.docx_第7页
第7页 / 共31页
重油催化裂解生产烯烃技术.docx_第8页
第8页 / 共31页
重油催化裂解生产烯烃技术.docx_第9页
第9页 / 共31页
重油催化裂解生产烯烃技术.docx_第10页
第10页 / 共31页
重油催化裂解生产烯烃技术.docx_第11页
第11页 / 共31页
重油催化裂解生产烯烃技术.docx_第12页
第12页 / 共31页
重油催化裂解生产烯烃技术.docx_第13页
第13页 / 共31页
重油催化裂解生产烯烃技术.docx_第14页
第14页 / 共31页
重油催化裂解生产烯烃技术.docx_第15页
第15页 / 共31页
重油催化裂解生产烯烃技术.docx_第16页
第16页 / 共31页
重油催化裂解生产烯烃技术.docx_第17页
第17页 / 共31页
重油催化裂解生产烯烃技术.docx_第18页
第18页 / 共31页
重油催化裂解生产烯烃技术.docx_第19页
第19页 / 共31页
重油催化裂解生产烯烃技术.docx_第20页
第20页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

重油催化裂解生产烯烃技术.docx

《重油催化裂解生产烯烃技术.docx》由会员分享,可在线阅读,更多相关《重油催化裂解生产烯烃技术.docx(31页珍藏版)》请在冰点文库上搜索。

重油催化裂解生产烯烃技术.docx

重油催化裂解生产烯烃技术

重油深度加工利用技术的新进展

——重油催化裂解制烯烃技术评介

(提要)

前言——石油与重油的深度加工利用问题

一、重油加工利用技术进展

二、重油催化裂解制烯烃技术综合评介

1、技术开发背景

2、技术特点

(1)CPP技术

(2)HCC技术

2、技术进展情况

(1)工业化进展

(2)工试结果

3、技术经济与社会效益分析

(1)技术经济分析

(2)社会效益分析

三、应用前景与发展建议

1、应用前景

(1)对石化工业发展的意义

(2)对中小炼油企业发展的意义

2、发展建议

重油深度加工利用技术的新进展—

重油催化裂解制烯烃技术评介

前言——

石油及其深度加工利用问题,一直是炼油和石化工业发展的重大课题

⏹石油逐渐得到人类社会的重视和利用——现代石油工业从1859年世界上真正具有工业生产意义的第一口工业石油井——美国埃德温·德雷克算起,还不足150年的历史。

石油在开初仅用来提炼灯油,其余的轻、重组份(汽油和重油)都被排弃。

十九世纪八十年代电灯的发明,使灯油市场也受到打击,但是当十九世纪末福特发明汽车后使汽油得到利用,随后,重油等其它石油炼制产品也逐渐得到了重视和利用。

⏹石油成为世界经济的发动机——二十世纪的两次世界大战,使石油成为世界经济的发动机和世界工业发展的润滑剂与促进剂;以石油为龙头所牵动工业经济的是一条不断延长的产业链—石油工业带动了整个工业的发展。

例如,廉价的石油剌激了以内燃机为动力的汽车、飞机等新兴工业产业的发展,而这些产业的发展又带动了钢铁、冶金、橡胶、玻璃等工业的发展。

⏹石油开创了人类社会的新文明——石油工业的发展促进了以石油为原料的化学工业的发展,产生了新型的石化工业、合成材料工业、化肥工业┉等等。

这不仅使现代石化产品渗透到人类社会和生活的各个角落,也促进了农业生产的发展,大幅度提高了粮食产量,从而改善和丰富人类的生活。

百年来的世界经济发展历史表明:

世界经济因石油的发展而迅速发展,也因石油的短缺而放慢脚步。

因此,经济学界有一种观点:

二十世纪是石油世纪。

石油开创了人类社会的新文明——石油文明,使世界上一些发达国家的生活发生了翻天覆地的变化,普遍出现了"三高"(高工资、高福利、高消费)的局面,家庭劳动和社会服务业普遍实现了电气化,各种家用电器急剧增加,跨地域和跨国家的旅游文化越来越普及,小汽车已成为普通百姓的代步交通工具。

人类在二十世纪所创造的史无前例的文明进步,无不与石油文明有关。

⏹石油对世界经济的发展产生着巨大影响——据世界经济合作暨发展组织(WECD)的一个量化估价(较为权威):

大约世界原油价格每桶上涨10美元,将会推动通货膨胀上升0.5%,经济增长放慢0.25%。

⏹石油的优良性质和低廉价格促进了它的深加工利用——石油所以对世界经济发展有如此巨大作用,主要在于石油具有“物美价廉”的优势——首先,石油的热值高是煤的两倍,而且石油的基本组份烃类具有极高的开发利用价值;其次,石油是液体,易于储运管理;而特别值得一提的是石油的价格相对较低,非常有利于发展深加工利用。

1973年以前,世界油价一直很低,甚至比水还便宜。

即使到现在,原油价格已涨到了40美元/桶左右,而相对于一桶矿泉水的价格约80美元,一桶可口可乐的价格约79美元,原油价格也仅为它们的½。

因此,发展石油的深加工利用,始终是炼油工业的一大课题。

重油的加工利用,也一直是炼油加工技术努力发展的一个重要方向。

⏹重油的深加工受到人们的关注——随着石油化工的快速发展和石油资源的深化利用,石油化工基础原料烯烃的生产已成为石油深加工中最为重视开发的产品之一。

而由于石化市场需求的增长和烯烃生产量的不断扩大,造成了烯烃生产原料的日渐短缺,使烯烃原料的多样化开发和用重油来生产烯烃,成为人们特别关注的问题。

一、重油加工利用技术的新进展

重油的深加工利用——充分利用石油的有效组份,提高石油的使用价值,是石油炼制加工业发展的主题,其中重油深加工利用技术,是石油加工技术发展的重点、也是一个主要难点。

重油加工利用的发展——随着石油工业和石油经济的发展,重油加工利用技术已经取得了很大的进展,由初期的简单加工,逐步向深度加工发展。

重油加工技术的发展,主要沿着直接利用和改质利用两个思路发展。

直接利用的思路,是采用尽可能简单的工艺技术,生产重质油品、重质燃料、沥青等产品。

而改质利用的思路,是采用裂解等工艺技术,尽可能多地生产汽油、煤油等附加价值高的轻质油品,并尽可能少地生成气体低分子烃类和焦炭等副产品。

重油加工利用技术——重油加工技术从加工机理分,大体上可以概括为两类。

一类为物理加工技术,如,蒸馏、萃取等多种重油分馏和溶剂脱沥青技术;另一类为化学加工技术有:

釜式焦化、热裂化、减粘裂化、连续焦化、灵活焦化等多种热裂解技术,多种氧化沥青技术,多种加氢裂化技术,以及湿式转化(aquaconversion)、催化热裂解等正在发展中的引入特定功能性催化剂的裂解技术。

实际上工业生产中的加工工艺,基本上都是组合加工工艺技术。

重油催化裂解技术——新开发的重油催化裂解技术,是以生产乙烯为主要目的产品的重油加工技术。

它是最近十多年里,在催化裂化工艺技术基础上,为调整产品结构多产液化气、多产丙烯,而逐步发展起来的重油加工技术。

这项技术是中国炼油技术界对世界重油加工技术的一大贡献。

中国专利技术HCC技术和CPP技术——以生产乙烯为主要目的产品的重油裂解技术,在世界不少国家都有研究(例如美国、日本等),它也是炼油化工技术发展中的一个重点课题,由于中国的研究开发工作起步较早(始于二十世纪八十年中代),因此,目前处于世界领先水平,已有两项不同的专利技术成果推向工业试验。

即:

中国石化洛阳石化工程公司开发的HCC技术和中国石化北京石油化工科学研究院开发的CPP技术。

二、重油催化裂解制烯烃技术综合评介

1、技术开发背景

发展石化工业需要发展乙烯——乙烯生产,在一定程度上已经成为衡量一个国家石油化工工业发展的重要标志,而传统的管式裂解炉制乙烯技术,原料需要使用轻烃(乙烷、石脑油、轻柴油),中国的轻烃资源不足,也成为制约中国乙烯—石化工业发展的重要因素之一。

发展重油深加工利用也是国情的需要——中国原油资源不足,而且多数原油较重,重油组份比例高,有较多的裂解重油原料资源。

因此,从利用好重油和增加乙烯原料两个方面来看,催化裂解制烯烃技术的开发,都是客观形势的要求。

CPP和HCC技术正是适应中国急需发展乙烯而原料又短缺的情况,从国内重油相对较多的实际出发,利用国内催化裂化技术较为成熟的基础条件来开发一项创新技术。

2、技术特点

(1)CPP技术(从DCC——到CPP技术)

发展历程——二十世纪八十年代中期以来,中国石化北京石油化工科学研究院开始从事重油制取低碳烯烃技术的研究,开发出了DCC、MGG和MIO等催化裂解系列技术,并成功地推向工业化。

近年来,在DCC技术基础上,通过对催化剂、工艺参数以及装置技术结构的的综合改进,开发出了以制取乙烯为主的重油催化热裂解新技术——(CPP)(CatalyticPyrolysisProcess,简称CPP)

工艺过程——CPP是以重油为原料,选用专门研制的分子筛催化剂,采用提升管反应器,催化剂以流态化连续反应-再生循环方式,在比管式炉蒸汽裂解制乙烯更为缓和的操作条件下,来生产乙烯和丙烯的催化裂解制烯烃技术。

反应机理——催化裂解技术的实质,是一个以催化裂解和热裂解同时存在的化学反应过程。

CPP催化剂具有正碳离子反应和自由基反应双重的催化活性,因此,新催化剂可以更多地生产乙烯和丙烯。

催化剂性能——CPP技术的核心在于CEP催化剂,CEP催化剂是一种酸性沸石催化剂,存在两种具有催化反应活性的酸性中心,一种为质子酸中心(即B酸中心);另一种为非质子酸中心,(即L酸中心)。

石油烃类在催化剂的B酸中心催化活性作用下,较容易发生正碳离子反应,产生丙烯和丁烯;而在催化剂的L酸中心催化活性作用下,除发生正碳离子反应外,还能进行自由基反应,因此,能较多地裂解产生乙烯。

一般的裂化催化剂反应活性中心以B酸为主,石油烃类在催化剂的B酸中心催化活性作用下,仅能发生正碳离子反应,因此生成的气体烯烃以丙烯和丁烯为主。

由于CEP催化剂中增添了较多的L酸中心活性组分,能够有利于增加自由基反应,从而可以生产大量的乙烯。

因此,CPP使用的CEP催化剂活性组分,应具有较高的L酸与B酸比值,以及较低的氢转移活性和较高的水热稳定性。

为此,采用专门研制的活性组分,并对基质、粘结剂以及CEP催化剂制备工艺等进行了改进。

CEP催化剂已由中国石化齐鲁石化公司催化剂厂实现了工业生产,工业产品CEP催化剂的物理性质与常规催化裂化催化剂相近,磨损指数还优于常规裂化催化剂,表明CEP催化剂具有良好的抗磨性能。

CPP催化热裂解工艺的主要特点——

⏹适应重质原料(包括AGO、VGO、渣油、焦化蜡油、脱沥青油,以及常压渣油等),有利于拓宽乙烯原料降低成本;

⏹催化剂综合性能好—催化剂是一种专门研制的改性新型择形沸石,具有正碳离子反应和自由基反应双重催化活性和对乙烯、丙烯的选择性,以及水热稳定性;

⏹裂解反应温度低、能耗低投资省——催化剂的引入可降低裂解反应的活化能,使裂解乙烯温度较管式炉蒸汽裂解大幅度降低(由800℃以上,降至600~650℃),从而降低了生产能耗;由于裂解反应温度低(650℃),再生温度也不很高(760℃),因此,反应再生系统可选用常规催化裂化装置使用的材料,无需选用昂贵的合金钢材料,节省了设备投资;

⏹可利用催化裂化装置改造—CPP技术采用提升管反应器和催化剂流态化连续反应-再生循环操作工艺,总体上与催化裂化工艺完全相同,因此,工艺成熟、操作灵活,也可利用现有FCC装置来改造;,

⏹操作灵活性大有利于调整生产—可根据需要通过调整工艺参数来灵活调整产品结构,例如可实现最大量生产乙烯、或最大量生产丙烯,以及乙烯和丙烯兼顾等多方案操作;

(2)HCC技术

开发历程——HCC技术(即,重油直接接触裂解制乙烯工艺——Heavy-OilContactCracking),是中国石化洛阳石化工程公司从1989年开始研究试验,历经十余年的努力开发成功的一种以重油为原料,采用专用催化剂重油裂解制乙烯、丙烯等低碳烯烃及高芳烃液体产品的新工艺。

该技术已获得国家发明专利(授权的两个专利名称为:

“重质烃类直接转化制取烯烃的方法”和“多种进料烃类直接转化制取烯烃方法”;专利号分别为和),并向美国了申请专利(被获准授权的专利为:

OPETIMIZEDPROCESSFORTHEPREPARATIONOFOLEFINSBYDIRECTCONVERSIONOFMULTIPPEHYDROCABONS;专利授权号为:

US6420621B2)。

反应机理——HCC技术是在重油催化裂化工艺技术基础上,采用了一种专门研制的催化剂,烃类在催化剂上的裂解反应机理,以自由基热反应为主,催化反应(正碳离子反应)为辅。

技术特点——

●适应重质原料(包括AGO、VGO、渣油、焦化蜡油、脱沥青油,以及常压渣油等),有利于拓宽乙烯原料降低成本;

●催化剂特性—HCC专用催化剂的组成,以SiO2/Al2O3为基质,主要调控催化活性和选择性的主要影响组分,少量添加沸石分子筛作为调节组分,保证催化剂的基本物化性能,以及其对重油催化裂解活性和选择性,能以自由基热反应为主,催化反应为辅。

●反应、再生温度高、剂油比高—HCC裂解反应温度670℃—700℃(最高730℃);再生温度800℃—850℃;剂油比高(18)、水油比高(>0.3)。

●产品结构好—在重油深加工技术中HCC技术是碳氢利用比较好的工艺,其原料中所含的氢能较为理想地转移向气体、液化气和轻油,因此,HCC产品干气中乙烯含量高、液化气中丙烯含量高、液体产品中的芳烃含量高。

例如,用常压渣油原料的试验,产品中有约50%的低碳烯烃(其中乙烯为24-28%);约25-27%的富含芳烃的液体产品。

●HCC技术有利于实现单套乙烯装置规模大型化—由于HCC技术的工程化,可立足于成熟的重油催化裂化(RFCC)技术和管式炉蒸汽裂解乙烯技术来组合实现,因此,按300—350万吨/年规模的重油催化裂解装置计算,单套装置的乙烯生产能力可以达到65—80万吨/年。

3、技术进展情况

(1)工业化进展

①CPP技术

工试情况——在中试放大的基础上,石科院与中石化公司BDI设计中心和中石油股份公司大庆炼化公司合作,将一套12万吨/年的DCC工业装置改造为8万吨/年CPP工业装置。

装置改造中除了将DCC工艺改为CPP技术外,还集合了乙烷和丙烷管式炉蒸汽裂解制乙烯,以及两段低压中冷油吸收乙烯分离等技术。

装置CPP改造在工艺技术和工程设计上有不少创新和突破,例如,沉降器和分馏塔顶部增加了油气急冷设施;再生斜管增设脱气罐,并增加了粗汽油、富气加氢系统;PSA氢气回收提浓装置,以及还增加了碳二分离、丙烯制冷等设施,形成了一个比较完整的催化热裂解制乙烯成套技术,并于2000年10月~2001年1月间进行了工业试验。

工业化进展——第一套50万吨/年CPP工业生产装置,已完成了可行性研究,准备在沈阳建设。

②HCC技术

工试情况——在中试的基础上,2000年7月在齐齐哈尔化学工业公司的一套小型工业装置上,进行了以大庆常压渣油为原料的HCC工艺短时间的探索性工业试验。

工试运转平稳、正常,操作灵活。

试验的各项工艺参数基本达到了设计指标,试验表明HCC专用催化剂(LCM-5)的活性、选择性、稳定性和流态化综合性能均良好。

标定结果表明,在反应时间偏高(2.8秒)的情况下,其乙烯和丙烯的单程裂解质量产率分别为22%和15.5%左右,混合丁烯质量产率为8%左右,乙烷产率为6-7%,如果考虑乙烷回炼的话乙烯产率可提高到26-27%,预计工艺条件优化后,产品结构还有调整和优化的可能。

另外,分析数据表明,裂解汽油馏分BTX含量高(芳烃含量76%)是很好的化工原料。

在齐化试验后,洛阳石化工程公司与中石油抚顺石化公司合作,将一套60万吨/年的FCC工业装置改造为8万吨/年HCC工业试验装置,在2002年以来的两年多时间内进行过多次工业试验并根据试验情况作过相应工艺改进,新近的一次工业试验连续运行时间已经超过100天。

HCC技术在齐化和抚顺的试验结果表明:

HCC技术工试装置裂解烯烃产率与中型试验数据基本吻合;催化剂LCM-5的工业产品具有良好的裂解活性,其乙烯单程产率可达22-23.5%,丙烯产率可达15-16%,轻质烯烃的总收率可达46-48%。

这说明LCM-5催化剂是一种重油裂解制取轻质烯烃的优良催化剂。

此外,其裂解产品的(乙烯/甲烷)比和(丙烯/甲烷)比均较高,这也证明LCM-5催化剂的催化裂解烯烃选择性是优良的。

(2)工试结果

①CPP技术

CPP工业试验原料油性质

试验方案

丙烯方案

中间方案

乙烯方案

密度(20℃)/g.cm-3

0.9002

0.9015

0.9012

残炭/m%

4.7

4.9

4.7

氢含量/m%

12.82

12.86

12.84

硫含量/m%

0.16

0.16

0.16

氮含量/m%

0.29

0.26

0.25

镍含量/ppm

5.8

6.2

6.3

族组成/m%

饱和烃

56.3

54.8

55.5

芳烃

27.2

28.4

28.0

胶质

15.7

16.0

15.7

沥青质

0.8

0.8

0.8

CEP催化剂性质

项目

CEP工业样品

化学组成/%

Al2O3

Na2O

Fe2O3

孔体积/ml.g-1

比表面/m2.g-1

堆密度/g.ml-1

磨损指数/%.h-1

灼烧减量/%

粒度分布/%

0-40µm

0-149µm

平均粒度/µm

46.3

0.04

0.27

0.24

152

0.86

0.91

12.0

17.7

91.8

71.1

裂解活性指数*)

70

CPP工业试验主要操作条件

试验方案

丙烯方案

中间方案

乙烯方案

进料量/t.h-1

9.73

8.00

5.90

反应温度/℃

576

610

640

反应压力/MPa(g)

0.08

0.08

0.08

再生温度/℃

720

725

760

空速/h-1

2.5

4.0

零料位

剂油比

14.5

16.9

21.1

水油比

0.30

0.37

0.51

CPP工业试验产品分布和烯烃产率

试验方案

丙烯方案

中间方案

乙烯方案

物料平衡/m%

干气

17.64

26.29

37.13

液化气

43.72

36.55

28.46

裂解汽油

17.84

17.61

14.82

裂解轻油

11.75

8.98

7.93

焦炭

8.41

9.67

10.66

损失

0.64

0.90

1.00

气体烯烃产率/m%

乙烯

9.77

13.71

20.37

丙烯

24.60

21.45

18.23

丁烯

13.19

11.34

7.52

CPP工业试验裂解汽油性质

标定方案

丙烯方案

中间方案

乙烯方案

密度(20℃)/g.cm-3

0.8158

0.8261

0.8315

二烯值/gI.(100g)-1

3.0

8.0

10.6

溴价/gBr.(100g)-1

24.8

34.5

44.1

辛烷值

RON

97.8

101.6

102.5

MON

82.1

87.6

87.8

族组成(色谱法)/m%

正构烷烃

6.30

3.76

1.24

异构烷烃

3.77

2.96

2.63

环烷烃

1.73

1.51

0.76

烯烃

9.28

12.79

16.25

芳烃

78.92

78.98

79.12

CPP工业试验裂解轻油性质

标定方案

丙烯方案

中间方案

乙烯方案

密度(20℃)/g.cm-3

0.9555

0.9852

1.0005

凝点/℃

-13

2

3

溴价/gBr.(100g)-1

14.1

19.8

24.3

族组成(质谱法)/m%

链烷烃

11.7

9.3

6.6

环烷烃

6.7

5.6

4.6

总芳烃

79.1

83.0

85.0

胶质

2.5

2.1

3.8

工业试验结论:

1)CPP工艺成功地在大庆炼化公司8万吨/年催化热裂解装置上进行了工业试验,工业试验结果与中小型试验结果相符,表明CPP技术成熟、工艺可靠。

2)CPP工业装置操作弹性大,产品结构可灵活变化,使用45%大庆蜡油掺55%减压渣油为原料,分别进行了丙烯方案、中间方案和乙烯方案的工业试验,乙烯、丙烯、丁烯的综合产率仔46.5—47.5%之间。

3)CEP催化剂工业产品经过两个多月的工业装置运转,证明它具有良好的裂化活性、烯烃选择性、抗金属污染性能以及优良的水热稳定性和流化输送性能。

4)由于催化热裂解的反应温度低于650oC,再生温度低于760oC,在反应器和再生器设计时,采用常规催化裂化装置的材料即可满足要求,因此,利用现有催化裂化装置进行适当改造来实施CPP工艺,是一条以重质原料在催化裂化基础上发展石油化工的新途经。

②HCC技术

HCC工试原料—常压渣油的组成分析

项目

单位

实测值

密度(20℃)

g/cm3

0.9144

粘度80℃

mm2/s

73.73

100

mm2/s

37.34

凝固点

47

残炭

%

7.82

平均分子量

527

关联指数(BMCI)

40.0

 

IBP

246

10%

381

50%

510

90%

676

95%

685

组成

CP

63.89

CN

%

20.58

CA

%

15.53

元素分析

C

%

86.30

H

%

12.67

S

ppm

6100

N

ppm

2973

金属

含量

Fe

ppm

24

Ni

ppm

13.5

V

ppm

1.0

Na

ppm

3.3

HCC催化剂LCM-5性质

项目

LCM-5

物理性质:

堆积g/cm3

0.86

孔面积cm3/g

0.11

比表面积m2/g

38.1

磨损指数%

2.00

化学性质:

Al2O3

37.2

Fe2O3

0.50

SO4=

0.98

活性组分

9.42

%

0~20μm

2.0

20~40μm

18.8

40~80μm

55.1

>80μm

24.1

 

HCC技术工业试验参考数据

项目

标定数据

原料油

大庆常压渣油

反应温度,℃

670-680

反应压力,KPa

100-125

水油比,w/w

0.6-0.66

裂解气(≤C4),w%

-

氢气

0.40左右

甲烷

9.0-9.5

乙烯

22.0-24.0

乙烷

5.0-5.5

乙炔

0.03左右

丙烯

15.0-16.0

丙炔及丙二烯

0.01左右

丁烯

4.0-5.0

1,3-丁二烯

3.0左右

丁烷

0.10左右

液体产品,w%

其中:

裂解汽油

12.0-17.0

中间馏份油

3.2左右

裂解重油

12.0左右

焦炭产率,w%

5.0-5.5

损失

0.5左右

合计

100.0

HCC技术裂解液体产品组成结构参考数据

项目

占镏分%

占液收%

对原料%

汽油镏分(IBP~200℃)

100

45.00

12.80

26.3

11.84

3.37

甲苯

29.85

13.43

3.82

间、对二甲苯

10.65

4.79

1.36

邻二甲苯

5.48

2.47

0.70

乙苯

4.32

1.94

0.55

苯乙烯

4.00

1.80

0.51

C9芳烃

10.11

4.55

1.30

C10以上芳烃

7.24

3.26

0.93

非芳烃及杂环化合物

2.05

0.92

0.26

轻油镏分(200~280℃)

100

24.00

6.83

单环芳烃

4.21

1.01

0.29

21.65

5.20

1.48

α一甲苦萘

13.16

3.16

0.90

二甲苦萘+三甲苦萘

29.68

7.12

2.02

芴、菲、蒽系等

15.29

3.67

1.04

非芳烃及环化合物

6.68

1.60

0.46

重油镏分(>280℃)

100

31.00

8.81

合计

100

28.44

HCC技术工业化注意主要问题——

HCC工艺是在重油催化裂化基础上开发的以重质原料生产低碳烯烃的工艺技术,它既有与重油催化裂化工艺相似之处,又有与重油催化裂化不同之处。

由于高温、大剂

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2