年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx

上传人:b****6 文档编号:13704210 上传时间:2023-06-16 格式:DOCX 页数:59 大小:215.12KB
下载 相关 举报
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第1页
第1页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第2页
第2页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第3页
第3页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第4页
第4页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第5页
第5页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第6页
第6页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第7页
第7页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第8页
第8页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第9页
第9页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第10页
第10页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第11页
第11页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第12页
第12页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第13页
第13页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第14页
第14页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第15页
第15页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第16页
第16页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第17页
第17页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第18页
第18页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第19页
第19页 / 共59页
年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx_第20页
第20页 / 共59页
亲,该文档总共59页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx

《年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx》由会员分享,可在线阅读,更多相关《年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx(59页珍藏版)》请在冰点文库上搜索。

年产850吨土霉素生产工程初步工艺设计毕业设计说明书.docx

年产850吨土霉素生产工程初步工艺设计毕业设计说明书

年产850吨土霉素生产工程初步工艺设计

 

3.4.3菌种的培养5

3.4.4三级培养5

3.4.5发酵液的酸化、净化、过滤7

3.4.6滤液脱色及树脂再生8

1总论

1.1行业概况

土霉素(Oxytetracycline,OTC)是20世纪40年代发现的四环素族成员,别名52羟基四环素,地霉素,地灵霉素,氧四环素等,分子式为C2H24N209,相对分子质量460.44,是一种广谱抗菌药物,被广泛用于治疗乳房炎,同时士霉素又是一种生长促进剂,常常被用作饲料添加剂。

在国内市场上,土霉素除了作为生产强力霉素等的原料外,主要用于畜禽药物以及饲料添加剂,临床用药微乎其微。

以土霉素为原料生产半合成抗生素的市场前景较好。

如多西霉素(强力霉素),就是以土霉素为原料经过多步反应制得的半合成抗生素,其市场价格是土霉素的5~7倍,产品大量出口。

预计今年市场仍然看好,是土霉素深加工的一个方向,在众多抗生素品种中,价格最低的土霉素今后将会在我国大量用于畜禽用药及饲料添加剂中,预计这方面的需求会不断增长,成为土霉素的主要市场。

土霉素作为动物促生长剂,主要是利用其提取过后的废菌丝,其可作为动物饲料或添加剂,提高动物生产力和生活能力,当然同时我们也应该注意其作为饲料所带来的耐药性和公共安全问题,特别是对人体健康的影响。

生产土霉素每年要有大量的废菌丝残渣。

此外,尚还有3000IU~5000IU的土霉素。

但是由于土霉素在我国已处于淘汰地位,废菌丝的来源亦受到限制,发展前景不容乐观。

但是由于土霉素生产成本低,价格便宜,服用方便,在农村广大地区耐药菌株相对较少,而一些新型抗生素虽然疗效好,但成本高,价格贵;其次与人们用药习惯也有关系。

总之,四环素类的抗生素生产在国内虽是出于淘汰趋势,但作为兽用专用抗生素或添加剂在国内仍有很大市场。

1.2设计概况

这次,我的设计的题目是《年产850吨土霉素生产工程初步工艺设计》。

在本次毕业设计中,我们要去综合运用所学的专业知识和自己的独立思考,去解决生产过程中的实际问题。

为了很好的系统的完善的完成这次毕业设计,在老师的指导下,我们在前期查阅了大量的文献资料,并且得到了老师的初步讲解,使我们对整个设计有了一个笼统的了解。

同时,我们还完成了开题报告的编写和前期各项工作的准备。

与此同时,在毕业设计过程中的前期,我们进行了大量的数据演算,不断反复推敲,选型,使设计初见成效。

同时,在2012年4月,学校组织我们去圣雪大成制药有限责任公司的车间进行实地实习,由此,我们能够更好的了解本次毕业设计。

毕业设计后期,通过老师几次重点突出的辅导,使我们在有限的时间里进行了数据的再次检查及制图的全过程,时我们的设计日趋完善,为我们今后的设计过程中提供了大量的实践经验。

1.3设计依据及范围

1.3.1设计依据

1生工学院下达的设计任务书,包括设计中的要求的物料衡算,生产工艺,设备选型等。

2提供的各种资料。

如《化工工艺设计手册》、《抗生素生产设备》、《发酵工厂设计》、《分离纯化工艺原理》、《抗生素工艺学》等参考书籍。

3在实习中所获得的经验。

1.3.2设计范围

本设计为年产850吨土霉素生产工程初步工艺设计,在本设计中包括土霉素碱生产工艺流程设计、物料衡算与设备选型、进行车间平面布置、水电气衡算、劳动组织与定员安排以及三废处理工程设计。

2设计指导思想、原则

2.1指导思想

充分贯彻执行国家的有关规定,尽量节约能源,合理利用废物,保护环境,符合城区建设规划要求。

生产、消防用水来自厂区内自来水供应,并与厂区供水管网引接,排水至厂区原有排水干管。

按确定的设计基础,即工艺流程及说明,原料、辅助原料、公用工程的规格、产品及主要副产品的质量规格、厂区的自然条件等,进行装置的物料衡算。

厂址选择是工业基本建设中的一个重要环节,在工厂布置和车间布置方面要符合国家长远规划和工业布局规划。

做好废气、废水和废渣的处理,控制好噪声,搞好绿化。

建立起全面的全系统的事故防范措施和人身健康保障措施。

各生产车间、原料包装及储存车间,采用封闭式结构。

在保证安全、经济运行的条件下,尽可能降低工程造价

年生产时间为330天。

2.2设计原则

车间所在工厂在居民区下侧,河流上游,要求地势平坦,水源丰富,并且节约用地,少占耕地。

尽可能采用新工艺、新设备、新技术,以利于投产后达到好的经济效益。

在条件允许情况下,尽可能的使用通用设备或标准设计以简化设计工作量,缩短工作时间。

原料来源立足于国内、立足于本地,选择优质价廉的原料立足于本地。

3土霉素生产工艺流程设计

3.1产品性质

土霉素(氧四环素,Oxytetracylinum)又称5-羟基四环素,属广谱抗生素两性化合物。

本产品为黄色结晶性粉末,无臭,在紫外线辐射下可产生黄色荧光。

分子式为C22H21N2O9-2H2O平均分子量为496.47。

理论效价为1000μ/mg,具有旋光性,熔点为148.5-185.5℃,土霉素具有吸湿性,在空气中吸收水分而潮解且颜色变深。

在PH4.5-7.5之间难溶于水,不溶于有机溶剂。

等电点为5.4。

主要用于革兰氏阳性菌和革兰氏阴性菌引起的感染,对立克次体及过滤性病毒有一定作用,能抗阿米巴肠炎及肠道感染,可以用于治疗上呼吸道感染、泌尿系统感染并且效果显著。

耐药性严重,毒副作用低,具有成盐、沉淀、降解成色等一系列化学反应。

3.2产品质量规格

产品质量符合中国药典2005版规定。

具体质量指标如下:

外观:

淡黄色粉末效价:

>910μ/mg

异物:

<5个/0.5g异物:

<5个/0.5g

比旋度:

[α]D25:

-199o酸碱度:

PH5.0-7.5

水分:

4.0%-7.5%保质期:

四年

杂质吸收峰:

430不大于0.5490nm不大于0.2

3.3工艺流程

[筛选高单位菌种流程]

菌种→斜面(37℃,14天)→孢子悬浮液→计数→诱变处理→分离→双碟(5-10个菌落)培养五天→挑选单菌落→试管斜面(4天)→挑斜面→接砂土管→砂土孢子→茄子瓶→斜面孢子

[工艺流程]

沙土孢子(36.5℃,4-5天)→斜面孢子(38℃,28-30h,空气搅拌)→一级种子培养(30℃,28-32h,1:

1.3VVm,空气搅拌)→二级种子培养(30℃,170-190h,1:

0.65VVm)→发酵液(草酸调PH1.75-1.85,硫酸锌0.15%,黄血盐0.25%)→酸化液(板框顶洗过滤10h→滤液(122#树脂脱色)→脱色液[15%水(含2%亚硫酸钠)调PH4.5-4.6,28-30℃]→结晶液(甩虑后用水淋洗再甩干)→湿晶体(进风:

140-170℃,出风:

40-80℃)→土霉素碱成品

3.4工艺流程简述

3.4.1种子制备

种子制备是在无菌条件下进行的,菌种名称为UV-138二代。

3.4.2各级培养基的制备

主要配料:

糊精、黄豆饼粉、淀粉、玉米浆、固剂、氯化钠、磷酸二氢钾、硫酸氨、碳酸钠、氯化钴、玉米油、淀粉酶、碳酸钙

各级种子培养基均在配料罐中配制,用打料泵送至各级种子罐中。

3.4.3菌种的培养

土霉素生产车间的菌种培养在培养室里进行。

生产用的菌种为Uv-138和龟裂链霉菌,用沙土管保藏,一般在温度为4℃左右的条件下可保存三年,一次可制备20多支试管。

在30℃条件下,经过7天时间的培养后,观察可看到,土霉素菌落丰满,菌落下有一定量的红色分泌物,面积大于菌落;孢子的颜色为乳白色。

3.4.4三级培养

以龟裂链霉菌为菌种

⑴ 一级种子培养

目的:

使来自实验室制备的孢子发芽、繁殖以获得一定数量的菌丝。

一级种子罐采用夹套式换热(自动温度调节),无搅拌动力设备。

一级种子罐培养基采用实罐灭菌,消前加泡敌消沫剂。

通气:

从罐底通入空气来达到物料混合均匀的目的。

培养温度:

32℃;时间:

30~32h;流量:

按压力降数;

罐压:

0.05Mpa;灭菌:

实消45min;PH:

6.0~6.3

接种:

待一级种子罐温度降到29~33℃时,即可接种,一般接种量(接种量指的是移入的种子悬液体积和接种后培养液的体积的比例)为7%~15%。

操作程序如下:

(1)用苏尔浸泡的棉花在接种帽处从内向外檫拭2~3次,再用75%的酒精棉球擦拭3~4次,然后用同样的酒精棉球盖在接种帽处点燃。

(2)用镊子将点燃的酒精棉球撤下,迅速将接种针头扎入接种帽,由一级种子罐的灭菌工开排气阀,将罐内压力控制在0.09Mpa,待罐内压力和接种瓶内压力平衡后,再由一级种子罐的灭菌工将罐内压力降至0.04Mpa,将接种瓶内的孢子悬浮液吸入一级种子罐内,将接种针头拔出。

(3)用火柴点燃蜡烛,让蜡液滴在接种帽上,凝固后用氧化锌胶布再封好。

消泡:

一级种子罐不需要加入消泡剂。

转移:

经过约30小时左右的培养,培养基的颜色渐渐的变为黄色,趋于成熟。

测量培养液的pH,当其值在6.0~6.4时即可作为种子移入二级种子罐。

一级种子培养技术参考指标:

消前:

PH6.1-6.7消后:

PH5.9-6.4

糖(g/ml):

2.5-3.7%氨氮(g/ml):

0.13-0.2%

溶磷(μg/ml):

85-135接斜面孢子:

两瓶

培养时间:

30-34h培养温度:

32±2℃

压力降:

0-6h,0.01MPa6-10h,0.02MPa10-12h放罐,0.03MPa

⑵二级种子培养

二级种子罐培养基采用实罐灭菌。

采用压差法将二级种子压入发酵罐中,全程通入无菌空气,实行机械搅拌,并进行补料。

打入种子液待二级种子罐温度降到29~33℃时,即可利用压差法将一级种子罐中的种子液打入。

通气土霉素是好氧霉菌,因此需要给罐内不断的通入空气,并且用搅拌桨不断的搅拌,以增加氧气的扩散和热量的交换。

消泡:

二级种子罐不需要加入消泡剂。

调温土霉素的最适生长温度为31℃,在发酵热,搅拌热等热源的作用下可能使发酵罐内的温度偏离,因此需要通入冷却水调节发酵罐的温度。

取样17~19小时时取样检测种子液pH,28小时时取样测量C、N、种子液效价和pH,并作出相关记录。

冷却:

二级种子罐采用6组蛇管的冷却装置进行冷却,进水方式为低进高出。

搅拌:

二级种子罐采用二级搅拌装置进行搅拌,该搅拌装置的桨叶为箭叶式,转速为160r/min,功率为10kW,另外空气流向与搅拌方向相反。

转移二级罐发酵28个小时后液体变为粽色、变稠,测量效价和pH,在培养后期,随着糖、氮浓度的降低,如果pH大于6.0,效价在800u/m1左右即可将其打入发酵罐中。

二级种子培养

灭菌:

实消30min消前:

PH5.9-6.3消后:

PH5.9-6.4

氨氮(g/ml):

0.36-0.5%溶磷(μg/ml):

270-390

接种量(ml/ml):

8-10%流量(m3/h):

900-1200

培养时间(h):

26-32罐压(MPa):

0.05±0.01

培养温度(℃):

32±2搅拌转速(r/min):

160

⑶三级培养---发酵罐

三级发酵罐采用列管式换热(自动温度调节),发酵罐采用六组蛇管冷却装置进行冷却,低进高出。

搅拌:

发酵罐采用四级搅拌装置进行搅拌。

灭菌接种三级发酵是土霉素大量产生的时期,发酵罐和相应管道经过高温实罐灭菌后,待罐温降到29~33℃时即可采用压差法将二级种子液打入发酵罐,开始发酵过程。

为了尽可能提高土霉素的产量,三级发酵分为30℃和31℃两个控制阶段。

即在0~50h温度维持在31±1℃,51~150h时温度保持在30±1℃,151h~放罐温度保持在31±1℃。

三级发酵大约需要八天左右的发酵时间。

补氮量的多少参考pH值。

要求100小时前pH在6.3~6.5,100小时后pH6.2~6.3。

为了防止气泡的大量产生需要给发酵罐内添加消泡剂,本工艺主要采用泡敌作为消泡剂。

补料随着发酵的进行,营养物质的浓度不断下降,因此要通过补料罐和氨罐为其提供营养。

当总糖下降到5%(g/ml)时开始补料,补糖量按糖代谢速度残糖量和糖维持水平来计算,补料液为实罐灭菌。

防止杂菌污染在抗生素发酵过程中污染杂菌的主要原因有培养基和发酵设备灭菌不彻底、种子带有杂菌、空气过滤系统被污染、发酵设备渗漏、操作不慎等,在移种、取样等过程中应进行严格的无菌操作,并根据需要多次取样进行无菌检查。

发酵过程技术参数:

消前:

PH5.8-6.1消后:

PH5.7-6.3

氨氮(g/ml):

0.5-0.7%溶磷(μg/ml):

170-300

残糖(g/ml):

<2.5%

空气流量(m3/h):

3500PH:

0-100h,6.6-6.1

培养时间(h):

140-170100h,6.5-5.5

培养温度(℃):

31.5±1150h-放罐,6.1-6.2

罐压(MPa):

0.03±0.01搅拌转速(r/min):

140。

3.4.5发酵液的酸化、净化、过滤

目的:

是发酵菌丝体内的土霉素与菌丝体分开,并进行净化(黄血盐和硫酸锌为净化剂),同时释放单位。

原理:

利用土霉素碱能与草酸生成盐而溶于水的性质,使土霉素碱从菌丝体内转入水相,以便与菌丝分离,利用草酸和发酵液中的Ca2+生成溶解度极小的草酸钙,除去Ca2+。

而草酸钙还能和一些有机杂质结合提高滤液质量:

加入黄血盐和ZnSO4做净化剂。

过量的黄血盐首先与发酵液中的Fe3+作用,生成普鲁士兰而去铁,反应式如下:

3Na4(Fe(CN)6)+4Fe3+→Fe4(Fe(CN)6)3↓+12Na+

余下的黄血盐和ZnSO4作用生成胶状亚铁氰化锌复盐反应式如下:

2Na4(Fe(CN)6)+3ZnSO4→Na2Zn3(Fe(CN)6)2↓+3Na2SO4

这种胶状物能吸附发酵液中部分蛋白质、色素,从而减少杂质对土霉素结晶的干扰。

四环类抗生素的产生菌在发酵过程中产生的抗生素主要以难溶于水的游离碱与高价金属离子螯合物积存在菌丝体内,因此未经酸化的发酵液其滤液效价很低。

酸化的目的就是将难溶于水的游离碱、高价金属离子螯合物溶解,转化为易溶于水的草酸土霉素,这是从一种化学状态转化为另一种化学状态的过程,也是从难溶状态转化为易容状态的过程,抗生素从菌丝体内转入水溶液中,生产上称为酸化释放单位。

转化率越高单位释放的越好。

过程:

发酵完毕,将发酵液压入酸化罐中,开动搅拌和压缩空气,按快速加酸法(尽量避开等电点)加入草酸(除Ca2+),调PH值至2.0左右,待消沫后加黄血盐(除Fe3+)并用草酸水进行稀释再加入ZnSO4(除蛋白质),最后稀释液打入板框过滤机,过滤完毕用低单位液和草酸顶洗,4000μ/ml左右回流,顶洗至500μ/ml时停止。

参考指标:

酸化:

PH1.9-2.0稀释单位:

12000-13000μ/ml

滤液要求:

透光度>80%效价:

>500μ/ml

3.4.6滤液脱色及树脂再生

原理

滤液通过122#树脂脱色吸附,可除去部分色素和将杂质吸附,122-2#树脂是由水杨酸、甲醛和苯酚合成的弱酸性阳离子树脂,该树脂在酸性溶液中H+不活泼,不能发生离子交换作用。

但能和滤液总的色素或有机杂质形成氢键,借助氢键力将这些杂质吸附,从而提高原液色泽和质量。

树脂在NaOH溶液中由H型变成Na型而失去氢键活性,能使吸附的色素和杂质解离出来,再经过酸水作用由Na型变成H型,可重复进行脱色。

滤液通过122-2#树脂脱色吸附,可除去部分色素和将杂质吸附,而树脂经水反洗→反碱→正碱→通酸→洗酸的过程再生。

3.4.7脱色液的连续结晶

原理

土霉素是酸碱两性化合物,等电点为4.5,可选择适当的碱化剂来调节脱色液pH至土霉素等电点,此时,土霉素在水中溶解度最小,可以从水溶液中直接结晶出来。

生产控制结晶pH为4.4~4.8。

根据土霉素结晶的速度,结晶达到完全需要50分钟,50分钟后母液中土霉素含量趋于稳定。

连续结晶设备的容量,保证结晶液以最大量通过时维持50分钟。

保证结晶液在流动的情况下达到完全结晶的目的。

3.4.8结晶液离心分离

原理

将结晶液中晶体及母液经离心分离以便得到含水量少,纯度较高的土霉素晶体,在离心机转鼓内铺设滤袋加入结晶液。

利用离心机产生的离心力将母液甩出,从而土霉素湿晶体留在滤袋内达到分离目的。

3.4.9湿结晶体的气流干燥

原理

气流干燥为急剧快速干燥,在干燥过程中湿晶体和高温热空气接触,使水分很快蒸发,一般接触时间3s~5s,由于时间短可减少土霉素因长时间受热而发生破坏,保证产品质量。

3.4.10结晶、干燥

用氨水调脱色液PH至4.5-4.8,进串联结晶柱,等电点附近搅拌沉淀结晶,将母液与晶体离心分离,并快速进行气流干燥,所得干粉再筛选分装。

4物料衡算

4.1有关土霉素生产技术指标

 

表2有关参数和技术经济指标

年产量

850吨

发酵单位

30000u/ml

发酵周期

182h

辅助时间

10h

发酵罐装料系数

0.75

过滤收率

1.12

脱色收率

0.95

结晶收率

0.90

干燥收率

0.97

年工作日

330天

成品效价

910u/mg

中小罐周期

30h

发酵补料(c*n)

接后体积的48%

蒸发损失

接后体积的20%

种子罐装料系数

0.6

种子罐损失

(以消后体积为准)

小罐12%

发酵单位富裕量

20%

中罐8%

通气量(比)

小罐:

1.5Vvm

中罐及大罐:

0.8Vvm

接种量(以消后体积为准)

小罐15%

发酵液稀释效价

15000u/ml

中罐9%

酸化PH植

1.75-1.85

加草酸量

3.2%(T/ms)

折合体积

0.6m3/T

配草酸水草酸用量

0.2%(kg/L)

发酵液含渣量

38%

净化剂加量

(以发酵液为准)

黄血盐

0.21%0.5m3/T

碱化剂

(以配碱化剂量为准)

氨水

15%(kg/L)

硫酸锌

0.15%0.4m3/T

NA2SO3

2.0%(kg/L)

脱色

A=2.67(1/h)

V=Qt=a/t

V.全部结晶罐体积数

交换负荷=F/M

F流量,M树脂体积

Q.体积流量m3/h

t.操作时间h

结晶时间

60min

a.批处理体积

母液单位

1000u/ml

结晶体含水量

20%

成品含水量

7%

SS-800离心机每台每次处理40kg结晶体

种子罐、发酵罐罐压

0.3*10^5Pa

加草酸量:

3.2%,折合体积0.62m3/T

(即每100吨发酵液添加3.2吨草酸,发酵液的体积增加0.62m3)

净化剂加量:

黄血盐0.21%0.5m3/T,硫酸锌0.15%0.4m3/T(含义同草酸)

提炼总收率:

1.12×0.95×0.90×0.97=0.93

4.2发酵阶段物料衡算

4.2.1发酵罐

由年产计算每天放罐发酵液的体积;

Vd=G×103×μp/(ηp×m×μm)=850×1000×910/(0.93×31000×330)=81.30m3

其中G:

年产量850吨μp:

910μ/mg=910g/Kg;m:

全年生产天数330天

μm:

发酵单位:

31000μ/ml=31000g/m3

ηp提炼总收率:

1.12×0.95×0.90×0.97=0.93

V放:

发酵或种子培养结束后,发酵罐或种子罐的放料体积

V进:

发酵罐的总进料量,包括消后体积和补料体积

V放=V接后+V补-V蒸发=V接后+48%V接后-20%V接后=1.28V接后=81.30m3

计算得:

V接后=63.52m3

又V接后=V消后+V接种=V消后+15%V消后=1.15V消后=63.52m3计算得:

V消后=55.23m3

V接种=15%V消后=55.32×15%=8.29m3V补=48%V接后=63.52×48%=30.49m3

V蒸发=20%V接后=63.52×20%=12.70m3V冷凝水=0.20V配料

又V配料=V消前=V消后-V冷凝水=V消后-0.20V配料

V配料=V消后/1.2=55.23/1.2=46.02m3V冷凝水=0.20V配料=0.20×46.52=9.21m3

4.2.2二级种子罐

V0=V接种/η0=8.29/0.6=13.82m3圆整为14m3

由物料衡算:

V消后+V接种=V放+V损失→V消后+9%V消后=8.29+8%V消后

其中:

中罐接种量-9%;中罐蒸发损失:

消后体积8%

即1.01V消后=8.29m3∴V消后=8.21m3V接种=9%V消后=0.74m3

V损失=8%V消后=0.66m3V接后=V放+V损失=8.29+0.66=8.95m3

V配料=V消前=V消后-V冷凝水=V消后-0.20V配料→1.2V配料=V消后=8.21m3

∴V配料=8.21/1.2=6.84m3

V冷凝水=0.20V配料=0.20×6.84=1.37m3

中罐台数=发酵罐台数×种子罐周期/发酵罐周期=28×30/182≈2台

设为4台,其中2台备用。

4.2.3一级种子罐

V放=V接种=0.74m3

V0=V接种/η0=0.74/0.6=1.23m3圆整为1.2m3

由:

V消后+V接种=V放+V损失其中V接种可忽略→V消后=0.88+12%V消后

即0.88V消后=0.74∴V消后=0.84m3

V损失=12%V消后=12%×0.84=0.10m3

又V配料=V消前=V消后-V冷凝水=V消后-0.20V配料→1.2V配料=V消后=0.84m3

得V配料=0.84/1.2=0.70m3

V冷凝水=0.20V配料=0.20×0.70=0.14m3

一级种子罐台数=二级种子罐台数×一级种子罐周期/二级种子罐周期

=2×30/30=2台

设为4台,其中2台备用。

4.2.4发酵阶段物料衡算总结

表1三级发酵料液平衡表

项目

大罐

中罐

小罐

V放(m3)

81.30

8.29

0.74

V消后(m3)

55.23

8.21

0.84

V接后(m3)

63.52

8.95

0.84

V接种(m3)

8.29

0.74

 

V冷凝水(m3)

9.21

1.37

0.14

V损失(m3)

12.70

0.66

0.10

V配料(m3)

46.02

6.84

0.70

V补料(m3)

30.49

 

 

V进(m3)

85.72

8.95

0.84

表2每罐发酵液原料消耗的计算(以接种后体积为基准核算)

原料名称

配比(%)

接种后体积m3)

投料量kg(L)

大罐(%)

中罐(%)

小罐(%)

大罐

中罐

小罐

合计

玉米浆

7

0.8

0.25

大罐:

63.52m3

中罐:

8.95m3

小罐:

0.84m3

5230.4

0.843

0.025

53.172

糊精

0.5

0.6

1.5

3.736

0.632

0.150

4.518

淀粉

7.25

5.29

1.6

54.172

5.576

0.160

59.908

磷酸二氢钾

0.03

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2