年产100吨克拉霉素中间体5181车间工艺设计2.docx

上传人:b****7 文档编号:16373368 上传时间:2023-07-13 格式:DOCX 页数:64 大小:174.44KB
下载 相关 举报
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第1页
第1页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第2页
第2页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第3页
第3页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第4页
第4页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第5页
第5页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第6页
第6页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第7页
第7页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第8页
第8页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第9页
第9页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第10页
第10页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第11页
第11页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第12页
第12页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第13页
第13页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第14页
第14页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第15页
第15页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第16页
第16页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第17页
第17页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第18页
第18页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第19页
第19页 / 共64页
年产100吨克拉霉素中间体5181车间工艺设计2.docx_第20页
第20页 / 共64页
亲,该文档总共64页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

年产100吨克拉霉素中间体5181车间工艺设计2.docx

《年产100吨克拉霉素中间体5181车间工艺设计2.docx》由会员分享,可在线阅读,更多相关《年产100吨克拉霉素中间体5181车间工艺设计2.docx(64页珍藏版)》请在冰点文库上搜索。

年产100吨克拉霉素中间体5181车间工艺设计2.docx

年产100吨克拉霉素中间体5181车间工艺设计2

年产100吨克拉霉素中间体518-1车间工艺设计

摘要:

本设计是按年产100吨(2′,4″-O-双三甲基硅烷基)-红霉素A-9-[O-(1-乙氧基-1-甲乙基)]肟(518-1)的量进行的车间工艺设计。

该物质是合成克拉霉素的关键中间体。

克拉霉素是新一代大环内酯类抗生素,临床应用广泛。

本次设计采用的工艺路线为:

以硫氰酸红霉素肟为原料、氨水为碱、二氯甲烷为有机溶剂进行游离反响后得到红霉素A肟,然后以红霉素A肟为原料,通过2-乙氧基丙烯进行醚化反响保护肟羟基,再用三甲基氯硅烷进行硅烷化反响,经离心、枯燥后得到克拉霉素关键中间体,整个工艺过程总收率可以到达86%。

设计内容主要包括车间工艺设计依据、工艺流程设计、物料衡算、能量衡算、工艺设备选型与计算、车间布置设计、三废处理、劳动保护、平安生产、工程经济等内容。

设计所得成果主要有设计说明书和相应的图纸,其中图纸包括反响釜装配图、工艺流程图、设备一览表、车间平面布置图及剖面图。

关键词:

克拉霉素;518-1中间体;红霉素肟;车间工艺设计

 

第1章概述

1.1设计依据

1.1.1设计的目的

在抗生素时代的初期,红霉素可谓是这个时代的先锋,但是经过时代的变迁,其药效与副作用呈现严重的比例失调。

然而,经过近半个世纪的努力,科学家们终于找到了许多比红霉素本身更为优越的新型红霉素类药物,大环内酯类抗生素克拉霉素就是就是其中之一。

作为21世纪初最畅销的抗菌药物之一,现在世界上许多国家已经将其投入临床使用,同时并有60多个国家在研究开发这个产品,以克拉霉素关键中间体为起点,衍生成多种类型的抗生素,使更好地效劳于临床,这将是我们目前最为迫切也最为重要的一步。

现在许多医药企业都在生产克拉霉素,那么对于力求在相对优越的环境下产出高纯度的关键中间体将是我们这项设计的首要任务。

1.1.2设计遵循的技术法规

(1)?

药品生产质量管理标准实施指南?

〔2001年版,中国化学制药工业协会,中国医药工业公司〕;

(2)?

药品生产质量管理标准?

〔2021年版,国家食品药品监督管理局颁发〕;

(3)?

环境空气质量标准?

GB3095-1996;

(4)?

污水综合排放标准?

GB8978-1996;

(5)?

工业“三废〞排放执行标准?

GBJ4-73;

(6)?

建筑工程消防监督审核管理规定?

公安部第30号令;

(7)?

建筑结构设计统一标准?

GB50068-2001;

(8)?

工业企业设计卫生标准?

TJ36-79;

(9)?

化工工厂初步设计内容深度的规定?

HG/20688-2000;

(10)?

化工工艺设计施工图内容和深度统一规定?

HG20529-92;

(11)?

关于出版医药建设工程可行性研究报告和初步设计内容及深度规定的通知?

国药综经字[1995],第397号;

(12)?

化工装置设备布置设计规定?

HG20546-92;

(13)?

工业企业噪音控制设计标准?

GBJ87-85;

1.2产品简介

1.2.1概述

克拉霉素是新一代半合成的大环内酯类抗生素,与细菌细胞核糖体50s亚基结合,抑制细菌蛋白质的合成而起到广泛的抑菌杀菌作用,对革兰阳性菌、阴性菌及厌氧菌等都具有很强的抗菌作用,对衣原体、支原体感染的抗菌活性是大环内酯类抗生素中最强的。

克拉霉素体外抗沙眼衣原体活性是红霉素的7~10倍,为强力霉素的4倍。

它在体内代谢而产生的14羟产物,具有生物活性,其抗菌谱与克拉霉素本身相同,而且它们在体内的抗菌活性比体外提高。

而合成克拉霉素其中一个重要的关键中间体就是(2′,4″-O-双三甲基硅烷基)-红霉素A-9-[O-(1-乙氧基-1-甲乙基)]肟(518-1),本车间工艺设计就是合成克拉霉素关键中间体(518-1)。

1.2.2产品名称

(1)化学名:

(2′,4″-O-双三甲基硅烷基)-红霉素A-9-[O-(1-乙氧基-1-甲乙基)]肟

(2)英文名:

(2′,4″-O-bis(trimethylsilyl))-erythromycinA-9-O-(1-ethoxy-1-

methylethyl)oxime

1.2.3化学结构、分子式及分子量

(1)化学结构:

(2)分子式:

[C48H94O14N2Si2]

(3)分子量:

979.44g/mol

(4)理化性质:

①外观:

白色结晶性粉末

②3

③℃

④闪点:

1.3产品合成工艺路线的论证

对于红霉素中间体,其质量的好坏关系到原料药生产的收率和质量,而其质量的好坏不是检测出来的,是设计生产出来的。

为了找到符合经济、资源等条件,而且比拟合理的工艺路线,要进行工艺论证。

作为大环内酯类常见的中间体,其生产工艺路线在国内外已经比拟成熟。

红霉素A肟分子共有6个羟基、1个肟羟基和1个叔胺基的甲基化活性基团。

早起的文献报道,利用CBz来保护叔胺基,利用邻氯苄氯进行9位肟羟基的保护,这些方法的保护剂毒性较高、对环境不友好,且6-甲基化红霉素A收率较低,存在着诸多的副产物(多甲基化产物和其他单甲基化产物),提纯步骤复杂。

之后开展为通过烯丙基来保护9位的肟羟基,通过硅烷化来保护2′位的羟基、4″位的羟基,此法收率有所提高,但存在去保护基的步骤条件苛刻(如需要贵金属催化)等问题,而且由于空间效应,3′位的二甲胺基在甲基化的条件下难以转化为季铵盐。

于是,以硫氰酸红霉素肟为原料,与氨水的碱性环境中生成红霉素A肟分子,通过2-乙氧基丙烯进行醚化反响保护9-肟羟基,再用三甲基氯硅烷进行硅烷化反响得到关键中间体(2′,4″-O-双三甲基硅烷基)-红霉素A-9-[O-(1-乙氧基-1-甲乙基)]肟(518-1)。

具体反响方程式如下:

本次设计是依据上述反响原理来进行的。

采用的工艺路线为:

以硫氰酸红霉素肟为原料、氨水为碱、二氯甲烷为有机溶剂进行游离反响后得到红霉素A肟,然后以红霉素A肟为原料,通过2-乙氧基丙烯进行醚化反响保护肟羟基,再用三甲基氯硅烷进行硅烷化反响,经离心、枯燥后得到克拉霉素关键中间体(518-1)。

第2章工艺流程设计及工艺过程

2.1工艺概述

本设计的的生产工艺的操作方式采用的是间歇式操作,整个工艺总体上分为3个工段,分别为:

肟盐处理工段、518-1反响工段和后处理工段。

具体包括8个反响单元过程,分别为:

游离反响、萃取洗涤、冷却浓缩、醚化与硅烷化反响、分层萃取、浓缩与顶蒸、离心、枯燥。

2.2工艺流程设计

2.2.1肟盐处理反响工段

(1)游离反响

①翻开二氯甲烷中转罐(V0302)进料阀,把回收合格的二氯甲烷或大贮罐内的新二氯甲烷用泵打入中转罐(V0302),将中转罐中的二氯甲烷用泵打入反响釜(R0101)中。

②关闭中转罐进料阀、放料阀,关闭反响釜(R0101)上进料阀。

③然后翻开反响釜人孔盖,投放肟盐,并搅拌,氨水高位罐(V0301)内用泵抽入600L氨水备用。

④然后翻开氨水高位罐(V0301)的底部放料阀,把氨水放入反响釜(R0101)中,同时观察物料的溶解状况。

⑤搅拌30min,使物料全部溶解。

⑥停止搅拌,静置30min,分层。

有机层分入下面的中转罐中。

(2)萃取洗涤

①水层参加300L二氯甲烷,并搅拌,搅拌10min,静置30min后分层,有机层并入前面的有机层中。

②水层再参加300L二氯甲烷,并搅拌,搅拌10min,静置30min后分层,有机层并入前面的有机层中,水层排弃。

③用泵将中转罐中的二氯甲烷层打入反响釜(R0102)中。

④转料结束,翻开水管,放入1000L水,搅拌10min,静置30min后分层,有机层放入下面的中转罐中,水层排放。

⑤用泵再将中转罐中的二氯甲烷层打入反响釜(R0102)中。

⑥转料结束,翻开水管,放入1000L水,搅拌10min,静置30min后分层,有机层放入下面的中转罐中,水层排放。

⑦用泵再将中转罐中的二氯甲烷打入反响釜(R0102)中。

⑧转料结束,翻开水管,放入1000L水,搅拌10min,静置30min后分层,有机层放入下面的中转罐中,水层排放。

⑨萃取洗涤结束。

(3)浓缩冷却

①用泵将中转罐中的二氯甲烷层打入反响釜(R0103),静置30min后用氮气压入浓缩釜(R0103)中。

②转料毕,关闭进料阀和排空阀,翻开二氯甲烷蒸出阀门和接收罐排空阀。

③℃之间进行蒸馏,同时控制热水温度在65℃。

④当蒸至有物料析出时,停止蒸馏,取样检测水分〔水分≤0.1%〕,如不合格,适当补加新鲜的二氯甲烷,然后继续蒸馏直到水分≤0.1%。

⑤蒸馏结束补加水分≤0.1%的二氯甲烷分散,再测水分≤0.1%。

⑥水分合格后,用氮气压入反响釜。

518-1反响工段

(1)醚化和硅烷化

①℃℃℃时即应盖住投料盖,单留放空阀,并用氮气保护。

②反响釜烘好后,翻开反响釜(R0104)进料阀,接受肟盐处理物,待接受完毕。

关闭进料阀,翻开投料盖取样检测〔水分≤0.1%〕。

如遇水分>0.1%,用热水带水至水分≤0.1%以下,再补二氯甲烷至反响量。

③℃时,翻开投料盖压去夹套盐水,快速投入80kg吡啶盐酸盐。

④搅拌10min后,再参加75kg2-乙氧基丙烯。

⑤℃℃,待物料澄清后计时保温30min。

⑥保温毕,翻开投料盖,投入咪唑82kg,搅拌反响60min。

⑦℃℃之间,约60min滴加完毕。

⑧℃,搅拌30min保温。

⑨保温毕,关闭回流阀,参加饮用水250L,搅拌15min,静置30min分层。

⑩用氮气将釜内料液压至萃取釜(R0105),上层水溶液放入中转罐。

上层咪唑水溶液放入中转罐,结束后,反响釜关底阀,参加700L饮用水清洗反响釜,清洗后压入萃取釜。

(2)分层萃取

①5N碱液〔50kgNaOH/200kg饮用水〕配制好后打入高位槽(V0305)中。

②℃℃〕,翻开投料盖测pH值,碱液用量以料液pH值为9.5-9.7为终点,pH调毕,搅拌5min,静置半小时,复测pH〔pH值应为9.5-9.7〕,分层。

③翻开缸底阀,将下层料层用氮气压入中转釜,将釜内乳化层及上层用回收的400L二氯甲烷萃取,搅拌10min,静置20min,分层。

将下层有机层连乳化层一起压入中转釜,压入完毕关掉中转釜进料阀,翻开萃取釜底阀,将上层水排如废水沟。

④中转釜的有机层再参加700L饮用水,搅拌10min,测pH〔pH值应为9.0-9.5〕,静置30min,分层,有机层转入萃取釜(R0106),水层排放。

⑤将配制好的盐水用泵输送进入萃取釜1200L,搅拌5min后,静置30min,分层,用氮气把萃取釜的有机层物料压入中转釜,测水层pH〔pH值应为9.0-9.5〕,水层弃去。

⑥有机层再用已配好的盐水1200L打入中转釜洗涤、搅拌5min,静置30min分层,将下层有机层和乳化层用氮气压入萃取釜,压毕,测水层pH≤8,将上层水层排入废水沟,萃取釜的有机层静置45min后,用氮气压入中转釜。

2.2.3后处理工段

(1)浓缩与顶蒸

①℃料液绸厚时,调整相关阀门和真空泵,改为减压蒸馏,蒸出的二氯甲烷放入到储罐(V0310和V0311),直至釜内固体料析出继续减压蒸馏1小时,取样送检518-1含量。

②℃,得到粗品。

(2)离心

当温度最终降至20℃时,将浓缩料液出料于离心机,参加适量的水进行屡次洗涤,离心得到的母液在母液沉降池沉降后,用离心机将其抽至母液沉降罐沉降后将上层清液吸去,洗涤至pH值为7.0,检测水分≤10%时送入烘箱枯燥。

(3)枯燥

将检测符合标准的物料送入烘箱,经水分、杂质检测合格后得到克拉霉素中间体成品,送至仓库储存。

2.3工艺流程框图

2.3.1肟盐处理反响工段工艺流程框图

 

 

图2-1肟盐处理反响工段工艺流程框图

.2518-1反响工段和后处理工段反响流程图

 

图2-2518-1反响工段和后处理工段反响流程图

第3章物料衡算

3.1概述

在初步确定的工艺流程后,从定性估计转入定量计算。

通过对工艺流程中各局部重要生产工段详细的物料衡算,得到原料、辅料、产品及中间损失相关量的关系,从而计算出进入与离开每一过程或设备的各种物料数量、组成,以及各组分的比例。

车间物料衡算的结果是车间能量衡算、设备选型、确定原材料消耗定额、精化管道设计等各种计算工程的依据。

对于已经投产的生产车间,通过物料衡算可以寻找出生产中的薄弱环节,为改良生产、完善管理提供可靠的依据,并可以作为检查原料利用率及三废处理完善程度的一种手段。

物料衡算的原理

物料衡算的理论依据是质量守恒定律。

对任何一个体系,物料平衡关系式可表示为:

输入的物料量-输出的物料量-反响消耗的物料量+反响生成的物料量=积累的物料量。

3.3物料衡算的基准与任务

3.3.1衡算基准

设计物料衡算的时间基准是天,质量基准是kg。

3.3.2设计任务

(1)设计任务:

年产100吨克拉霉素中间体518-1车间工艺设计

(2)工作日:

330天/年,1天2批

(3)产品净含量:

99%

(4)含水量:

0.5%

(5)那么每天的净产量为:

克拉霉素中间体的日净产量

3.4各步骤收率

(1)肟盐处理工段各步骤收率

××0.99=0.93=93%

(2)518-1反响工段各步骤收率

×0.99=0.94=94%

(3)后处理工段各步骤收率

×0.98=0.97=97%

表3-1各反响单元收率和总收率一览表

反响工段

反响单元

各反响单元收率

各反响工段收率

总收率

肟盐处理

游离反响

95%

93%

85%

萃取洗涤

99%

冷却浓缩

99%

518-1

醚化与硅烷化

95%

94%

后处理

99%

萃取枯燥

蒸馏浓缩

99%

98%

离心

98%

枯燥

98%

××0.97=0.86=85%,所以理论克拉霉素中间体日产量为300/85%=352.94。

3.5各反响单元

3.5.1游离反响

化学方程式:

化学名称:

硫氰酸红霉素肟

红霉素A肟

分子量:

808.03

748.94

(1)进料量

【计算过程】

以硫氰酸红霉素肟的量计算基准,那么每天所需纯硫氰酸红霉素肟的投料量

硫氰酸红霉素肟化学纯量:

×1%=2.94

×

×

二氯甲烷化学纯量:

1000×99.9%=999

99.9%二氯甲烷的粗投料量:

1500L

其中杂质含量:

1500×

表3-2游离反响原料投料比一览表

物料名称

规格和纯度

分子量(g/mol)

投粗料量(kg)

化学纯量(kg)

水或杂质

含量(kg)

硫氰酸红霉素肟

原料,99%

氨水

工业级,20%

二氯甲烷

工业级,99.9%

1500

总计

——

——

(2)出料量

【计算过程】

①反响生成的物料

××

×

××

××

②未反响完的物料

×

×

③水杂质总量

生成水的量:

6.49

 

④二氯甲烷的量:

1500×

表3-3游离反响进出物料衡算一览表

操作过程

物料名称

质量(kg)

质量百分比(%)

密度(kg/L)

体积(L)

进料

硫氰酸红霉素肟

氨水

二氯甲烷

水杂质

总计

——

出料

红霉素肟

二氯甲烷

硫氰酸红霉素肟

硫氰酸铵

水杂质

总计

——

3.5.2萃取洗涤

说明:

①萃取洗涤工序的进料量主要为游离反响工序的出料量。

②进料时将硫氰酸铵、氨水、硫氰酸红霉素肟合并至水杂质中。

(1)进料量

【计算过程】

②水杂质总量

 

③二氯甲烷的量

参加二氯甲烷的量:

300L

二氯甲烷总量:

300×1.33+1455.00=1854

参加水的量:

1500L

水的总量15000×1.00=1500

(2)出料量

【计算过程】

①有机层

×

×

二氯甲烷的量:

1854×

②水层〔水杂质〕

 

饮用水的量:

3000

表3-4萃取洗涤的物料衡算一览表

操作过程

物料名称

质量(kg)

质量百分比(%)

密度(kg/L)

体积(L)

进料

红霉素肟

二氯甲烷

水杂质

饮用水

总计

——

出料

红霉素肟

二氯甲烷

水杂质

总计

——

3.5.3冷却浓缩

(1)总物料平衡:

F1+F2=F3+F4

(2)各组分平衡:

红霉素肟253.83(F2)×99%=251.29(F3)

二氯甲烷397.50(F1)+1798.38(F2)=X(F4)

水0.04(F1)+1.28(F2)=0.25(F3)+Y(F4)

综合上述方程式可求得:

冷凝后二氯甲烷物料(F4)中二氯甲烷的量X(F4)=2195.88;水的含量Y(F4)=1.07。

表3-5浓缩工序的物料衡算一览表

操作过程

物料名称

质量(kg)

质量百分比(%)

密度(kg/L)

体积(L)

进料

红霉素肟

二氯甲烷

含水量,水

新加二氯甲烷

总计

——

出料

红霉素肟

二氯甲烷

总计

——

3.5.4醚化和硅烷化

化学方程式:

分子量:

748.94

化学方程式:

分子量:

790.01

979.44

(1)进料量

说明:

在以红霉素肟的量为计算基准的根底上,根据投料比及物料的规格算出其余各物料的投料量。

浙江工业大学曾对“红霉素肟的醚化保护过程〞进行研究,说明当催化剂吡啶盐酸盐的摩尔量为红霉素肟的1.5倍时,反响得到的产品纯度和收率均较高,目前这项工艺已被国内许多药厂运用于实际生产之中。

【计算过程】

红霉素肟化学纯量:

251.29

其中杂质含量:

253.83-251.29=2.54

×

 

××

 

××

其中杂质含量:

78.07-76.51=1.56

××

其中杂质含量:

74.39-72.90=1.49

××

其中杂质含量:

34.43-34.26=0.17

⑦参加饮用水的量:

150L(料液静置分层时参加)

表3-6醚化和硅烷化投料量一览表

物料名称

规格和纯度

分子量(g/mol)

投粗料量(kg)

化学纯量(kg)

水或杂质含量(kg)

红霉素

工业级,99%

二氯甲烷

工业有机原料,99.95%

2-乙氧基丙烯

药用,99.5%

吡啶盐酸盐

工业品,98%

三甲基氯硅烷

医药中间体,98%

咪唑

工业品,99.5%

工业用水

工业用水

总计

——

——

(2)出料量

【计算过程】

①反响生成的物料

××

×

×2×

②未反响完的物料

 

④参加的饮用水的量:

150L

×

表3-7醚化和硅烷化反响物料衡算一览表

操作过程

物料名称

质量(kg)

质量百分比(%)

密度(kg/L)

体积(L)

进料

红霉素肟

二氯甲烷

2-乙氧基丙烯

吡啶盐酸盐

三甲基氯硅烷

咪唑

工业用水

其他水杂质

总计

——

出料

克拉霉素中间体

二氯甲烷

咪唑

吡啶盐酸盐

盐酸

其他水杂质

总计

——

3.5.5分层萃取

说明:

①碱液、食盐水和水的损耗均以3%计;

②碱液的规格为(50kg氢氧化钠:

200L饮用水),其用途是用来调节pH值,理论可行的使用量为100L,但实际可能会有出入,以调节至pH值为9.7左右为准。

【计算过程】

(1)进料量

①二氯甲烷层

 

②氢氧化钠溶液的量:

100L,即100×2.13=213

配制碱液所需固体氢氧化钠的量:

100×50/200=25

其中水含量:

100

③二氯甲烷的量:

200×1.325=265

其中杂质含量:

265×

水的参加量:

350L

饱和食盐水的量(用盐水萃取两次,每次以1200L的量为基准)

第一次参加量:

600×2.165=1299

其中杂质含量:

1299×0.2%=2.60(饱和食盐水中氯化钠原料用的是99.8%纯度的)

第二次参加量:

600×2.165=1299

其中杂质含量:

1299×

(2)出料量

【计算过程】

①有机层:

二氯甲烷层

×

×

②水层:

水层(水杂质)的量:

萃取釜中水杂质排弃的量:

碱液的量:

100×97%=97L

盐水的量:

1299×97%=1260.03(第一次饱和食盐水萃取后)

中转釜中水杂质排弃的量:

水的量:

700×97%=679

盐水的量:

1299×97%=1260.03(第二次饱和食盐水萃取后)

因此水杂质总量:

97×

表3-8518-1萃取洗涤工序的物料衡算一览表

操作过程

物料名称

质量(kg)

质量百分比(%)

密度(kg/L)

体积(L)

进料

克拉霉素中间体

二氯甲烷

氢氧化钠溶液

二氯甲烷

饱和食盐水

总计

——

出料

克拉霉素中间体

二氯甲烷

水杂质

总计

——

3.5.6浓缩与顶蒸

说明:

萃取洗涤后的物料分两釜进行浓缩

(1)进料量

【计算过程】

①二氯甲烷层(F1)

其中水的含量:

(154.54/99%)×

②99.9%甲苯的量(F2):

25L

即25×

×

(2)出料量

【计算过程】

①回收二氯甲烷的量(常压、减压蒸馏)(F3)

二氯甲烷纯量:

X1

水分含量:

Y1

②克拉霉素中间体(F4)

×

水分含量:

(248.95/99%)×

回收甲苯的量(F5)

甲苯的量:

X2

水分含量:

Y2

总物料平衡:

F1+F2=F3+F4+F5

各组分平衡:

克拉霉素中间体154.54(F1)×99%=152.99(F4)

二氯甲烷187.01(F1)×99%=X1(F3)

甲苯21.65(F4)×99%=X2(F5)

水0.78(F1)+0.0021(F2)=Y1(F3)+0.25(F4)+Y2(F6)

综合上述方程式可求得:

Y1(F3)+Y2

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 哲学历史

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2