毕设设计翻译.docx

上传人:b****1 文档编号:14354191 上传时间:2023-06-22 格式:DOCX 页数:18 大小:61.61KB
下载 相关 举报
毕设设计翻译.docx_第1页
第1页 / 共18页
毕设设计翻译.docx_第2页
第2页 / 共18页
毕设设计翻译.docx_第3页
第3页 / 共18页
毕设设计翻译.docx_第4页
第4页 / 共18页
毕设设计翻译.docx_第5页
第5页 / 共18页
毕设设计翻译.docx_第6页
第6页 / 共18页
毕设设计翻译.docx_第7页
第7页 / 共18页
毕设设计翻译.docx_第8页
第8页 / 共18页
毕设设计翻译.docx_第9页
第9页 / 共18页
毕设设计翻译.docx_第10页
第10页 / 共18页
毕设设计翻译.docx_第11页
第11页 / 共18页
毕设设计翻译.docx_第12页
第12页 / 共18页
毕设设计翻译.docx_第13页
第13页 / 共18页
毕设设计翻译.docx_第14页
第14页 / 共18页
毕设设计翻译.docx_第15页
第15页 / 共18页
毕设设计翻译.docx_第16页
第16页 / 共18页
毕设设计翻译.docx_第17页
第17页 / 共18页
毕设设计翻译.docx_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

毕设设计翻译.docx

《毕设设计翻译.docx》由会员分享,可在线阅读,更多相关《毕设设计翻译.docx(18页珍藏版)》请在冰点文库上搜索。

毕设设计翻译.docx

毕设设计翻译

Concretestressexperiment

1Introduction

Inthispaper,thestress—strainbehaviorofSFRCunderuniaxialtensionWasanalyzedfordifferenttypesoffiber.ThetensilecharacteristicsofSFRCinfluencedbythematrixstrengthandthesteelfibercontentwerestudiedalso.Inaddition,thestress—straincurvesofhighstrengthSFRCwithdifferentfactorswerewellacquired.Themechanismoffiberreinforcedconcretetoenhanceresearch,toobtainsteelfiberreinforcedconcreteintensioncurveofthewholeprocess,usingthemostappropriatemethodofaxialtension,buttomakesurethetestingmethodsimproved,andthetestingmachinemusthaveenoughstiffnesstoensurethetestingprocessstability.Iswellknowninengineeringpractice,process,technologyandeconomicconditionsduetoconstructionconstraints,SFRC-dopedfibervolumeintherateofgenerallynotmorethan2%,whilemostoftheengineeringexample,thefiberfractionareabout1%.InthispaperthedesignoftheaxialtensionSFRCmaterialtesting,fiberdosagetotake1%,andusingdifferenttypesoffiber-reinforcedforms,wereanalyzed.

2ExperimentalContent

Thespecimensweretestedona60kNuniversaltestingmachine.Fourhighsteelbarswereaddedtoenhancethestiffnessofthetestingmachine.Inaddition,spherichingeswereusedtoabatetheinitialaxialeccentricityofthespecimens..

Itwasensuredthatspecimensshouldbepulledunderuniaxialtensionbyadjustingthefourhighstrengthboltswhichconnectthespecimenstothecrossbeam.Andthedifferencebetweenthetensilestrainsoftheoppositesidesofthespecimenshouldbelessthan15%oftheirmeanvalue.Whenthefibercontentwaslow(0and0.5%byvolume),thecyclicquirethewholestress—strain.

2.1Materials

FourtypesofsteelfibersshowninTablewerechosenforthistest.Threeofthesefibers(F1,F2andF3)werehooked—endandtheotherone(F4)wassmooth.

Threeconcretemixtures,showninTable2,wereinvestigated.WaterreducingagentswereusedinC60andC80mixes(DK一5madebyDalianStructureResearchInstituteandSikamadeinSwitzerlandrespectively).ThecompressivestrengthsoftheseC30,C60,C80mixesweredeterminedaccordingto“TestMethodsUsedforSteelFiberReinforcedConcrete”(CECS13:

89)"83at28daysusing150mm×150mm×150mmcubes.Averagedresultsfor3specimensaregiveninTable2.0rdinaryPortlandcement(yieldedbyDalianHuanengOnodaCementCompany)of32.5and52.5(accordingtoChinastandard)werechosen.Riversand(modulusoffinenessis2.6)andcrushedlimestonecoarseaggregates(5—20Bin)wereused.

Table

Matrix

code

Strengthgrade

Ofcement

(ISO)

Cement

Kg/m3

u/c

ratio

Sand

ratio

Sand

Kg/m3

Crushed

Strne

Kg/m3

Water

reducing

Compressive

Strength

Mpa

C30

32.5

450

0.44

0.36

667

1155

----

37.07

C60

52.5

500

0.35

0.33

602

1223

DK-5

67.59

C80

52.5

600

0.29

0.31

535

1190

Sika

82.96

2.2Specimen

Thetensilespecimenwasbondedtosteelpaddingplatesatbothendsbytygoweld.Atotalof110specimensweredividedinto22groupsaccordingtocertainparameters.TheparametersofthesespecimensareshowninTable3.

2.3Items

Attheageof28days.plainconcreteandsteelfiberconcretespecimensweretestedfortensilestrength,respectively.Thetensilestress—straincurveswereacquired.Manyothertensilecharactersofthehighstrengthsteelfiberconcretesuchastensilework,etcwerecalculatedalso.Enhancedclasssteelfiberreinforcedconcretetoughnesscategorythanthestrengthofsteelfiberreinforcedconcreteanaverageof13%;whilecrackingfromthebasictothecrackwidthof0.5mminterval(thecorrespondingstrainofabout2000με)showedthefractureenergyintegral:

tougheningclasssteelfiberreinforcedconcreteenhancedclassthanthefractureenergyofsteelfiberreinforcedconcreteanaverageof20%.fromTable3alsoshowsthatmostoftheSFRCfirstpeakcorrespondstothelimitoftensilestrainvalueandplainconcreterather,inthe100μεaround,indicatingalowrateoffiber-containingincorporationinimprovingtheroleofultimatetensilestrainofconcreteisnotveryobvious.ThetougheningclassSFRCsecondpeakcorrespondstoamuchgreaterstrain,upto1000με,Fromthissecondpeakhasgreatlyenhancedtheappearanceoftoughness.DRAMIXFiberbecauseofthelengthofotherthreekindsoffiberlengthof2timesthefracturetoughnessandbetterinthetestcurvecanbeseeninthestrainisattained,theloadcontinuestomaintainahighlevelofintensity,untilthestrainwhentheloadsoastomaintain10000μεitspeaklevelof50%.

3ResultsandDiscussion

3.1Crackstressandultimatetensilestrength

ThecrackstressandultimatetensilestrengthofdifferentspecimensarelistedinTable3.Theadditionofsteelfibersintoconcreteincreaseditscrackstressandultimatetensilestrength.AndtheratiosofthesetwoparametersofSFRCtothoseofplainconcreue(withthesamemixproportion)aregiveninTable3,too.

3.1.1Effectofmatrixstrengthan(1fibertype

Fromtable3.Itcanbeseenthattheeffectsofsteelfibers0ncrackstressarelittleinfluencedbythematsixstrength.Thatistosay.Whenthematrixstrengthincreases,theratiosofcrackstressesofSFRC(withthesametypeoffiberscontained)tothoseofplainconcreteoneswiththesamemixproportionareinvariable.

However,theconditionforultimatetensilestrengthisdifferent.Whenthematrixstrengthincreases.theseratiosofultimatetensilestrengths(showninTable3)varydissimilarlyaccordingtothetypeofsteelfiber.Moreover.theincrementsarebiggerthanthoseofcrackstress.

TheheighteningefficiencyoffiberF1forultimatetensilestrengthrisesasmatrixstrengthincreases.Itisbecausethatthestrengthofthiskindoffiberisveryhigh(>1100MPa).Nofiberbrokenwasobservedduringthetestandthehooked—endsofthefiberswerestraightenedwhenthematrixstrengthwashigh(C80).Thehigherthematrixstrength.thiskindofsteelfibertakesonitsstrengtheningeffectmoreefficientlyfortheincreasingofbondstress.ThestrengthsoffibersF2andF3aremid—high(>700MPa).Theyallhavehookedendsandbothoftheirsurfacesarecoarse.Whenthematrixstrengthwashigh(C80).fiberbreakingoccurredinthetest.Andthisphenomenonimpairedtheheighteningefficiencyofthesetwokindsofsteelfiber.Sotheyshouldbeusedinmiddlestrengthconcretetoexerttheirstrengtheningeffectmoreefficiently.FiberF4issmooth.anditsbondstresswithmatrixiscomparativelylow.T}1erefore.itsstrengtheningeffectis1essnotablethanthoseofotherkindsoffiber.Becauseofthelowbondstress.nofiberbrokenwasfoundduringthetestanditsheighteningefficiencyforultimatetensilestrengthrisesasmatrixstrengthincreases.

3.1.2Effectoffibercontent

Theeffectoffibercontentonthecrackstressandu1.ultimatetensilestrengthwasinvestigatedforSFRCcontainedfiberF3.Andthefibercontentvariedfrom0.5%to1.5%byvolume(showninTable3).ItcanbeseenfromFig.1andFig.2thatasthefibercontentincreases.

ThecrackstressandultimatestrengthofSFRCimproveobviously.Moreover.therisingtrendsofthecurvesinthesetwofiguresarestupendouslysimilar.Inotherwords,theeffectoffibercontentonthecharactersoftensilestressofSFRCispositiveandconsistent.

Table4Fibertypefactors

Fibercodeat

F10.642

F20.862

F30.794

F40.589

ThetensilestrengthofSFRCcanbecalculatedwiththefollowformula:

(1)

where,fftistheultimatetensilestrengthofSFRC;theultimatetensilestrengthofplainconcretewiththesamemixingproportion;a,thefibertypefactor,

whichisshownTable4;

isthefibercontent0fvolumeandl/distheaspectratioofsteelfibers.

3.2Tensilestrainandtoughnesscharacters

3.2.1Crackstrainandthestrainatpeaktensileload

Thetensilestrainswereacquiredbyaveragingthereadingsofthefourdisplacementsensorsfixedaroundthespecimen.Inaddition,thespecimenswhosedifferencebetweenthetensilestrainsofitsoppositesidesislargerthan15%oftheirmeanvaluewereblankedout.

ThecrackstrainorthestrainsatpeaktensileloadofSFRCaremuchbiggerthanthoseofplainconcrete(asshowninTable5).Andtheincrementsgoupasthematrixstrengthorthefibercontentincreases.Comparedtothatoncrackstrain.theincrescenteffectofsteelfiberon

thestrainatpeaktensileloadismoreremarkable.

3.2.2Tensileworkandtoughnessmodulus

Thetensileworkwasdefinedastheareaundertheload-displacementcurvefrom0to0.5rain.More—over,atensiletoughnessmoduluswasintroduced(showninTable5).

Itwasdefinedas:

(2)

where,fftistheultimatetensilestrengthofSFRC;A,theareaofthecrosssectionofspecimen.

BoththesetwoparameterswerequotedtoevaluatethetoughnesscharactersofSFRCunderuniaxialtension.Thetensiletoughnessmodulusisadimensionlessfactor.Comparedtowhatthetensileworkdoes.itcanavoidtheinfluenceoftheultimatetensilestrengthwhenstudyingthetoughnessofSFRC.

ItcallbefoundfromTable5thatthealteringregularitiesofthesetwofactorsalongwiththechangesofmatrixstrengthandfibercontentareapproximate.Therefore,theemphasisofanalysiswasputonthetoughnessmodulus.

TherelationshipbetweenthematrixstrengthandtoughnessmodulusofSFRCwithfourkindsofsteelfiberareshowninFig.3.whosefibercontentsareall1.O%byvolume.togetherwiththatrelationshipofplainconcrete.ThetensiletoughnessofSFRCismuchbetterthanthatofplainconcrete.Thetensiletougheningeffectofsteelfiberisremarkable.Asthematrixstrengthrises.Thebrittlenessofconcreteincreasesobviously,andthenthete

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2