天文学重要公式文档格式.docx

上传人:b****2 文档编号:1462450 上传时间:2023-04-30 格式:DOCX 页数:16 大小:81.03KB
下载 相关 举报
天文学重要公式文档格式.docx_第1页
第1页 / 共16页
天文学重要公式文档格式.docx_第2页
第2页 / 共16页
天文学重要公式文档格式.docx_第3页
第3页 / 共16页
天文学重要公式文档格式.docx_第4页
第4页 / 共16页
天文学重要公式文档格式.docx_第5页
第5页 / 共16页
天文学重要公式文档格式.docx_第6页
第6页 / 共16页
天文学重要公式文档格式.docx_第7页
第7页 / 共16页
天文学重要公式文档格式.docx_第8页
第8页 / 共16页
天文学重要公式文档格式.docx_第9页
第9页 / 共16页
天文学重要公式文档格式.docx_第10页
第10页 / 共16页
天文学重要公式文档格式.docx_第11页
第11页 / 共16页
天文学重要公式文档格式.docx_第12页
第12页 / 共16页
天文学重要公式文档格式.docx_第13页
第13页 / 共16页
天文学重要公式文档格式.docx_第14页
第14页 / 共16页
天文学重要公式文档格式.docx_第15页
第15页 / 共16页
天文学重要公式文档格式.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

天文学重要公式文档格式.docx

《天文学重要公式文档格式.docx》由会员分享,可在线阅读,更多相关《天文学重要公式文档格式.docx(16页珍藏版)》请在冰点文库上搜索。

天文学重要公式文档格式.docx

V=KD(K:

哈勃常数,当前的估算值为每百万秒差距每秒70千米;

D:

星系距离)

6、z=90.-h(Z是天顶距,H是天体的地平高度)

7、p=90。

-δ(δ赤纬,P是天体的极距)

8、仰极高度=当地纬度=天顶赤纬

9、天体力学一个重要的公式--活力公式

v2=G(M+m)(2/r-1/a)

(v为天体再轨道的上的运行速度,r为距离,a为轨道半长径)

显然:

当a=r时 

 

v2=G(M+m)/r, 

轨道为正圆

 

当a=∞时:

v2=2G(M+m)/r,轨道为抛物线

当r<a<∞时:

v2=G(M+m)(2/r-1/a),轨道为椭圆

10、关于逃逸速度的公式,按照天体力学中的活力公式,令a趋向无穷,同时令r等于中央天体的半径,我们就得到了逃逸速度公式,

v2 

=2G(M+m)/r  

11、 

第二宇宙速度的推导

物体脱离地球引力进入行星轨道需要的速度,叫做第二宇宙速度,第二宇宙速度

,推导如下:

用M表示地球的质量,R表示地球的半径,m表示物体的质量,G表示引力常量,把一个物体从地球表面发射到无限远去,对它所需做的功W是

如果物体所具的动能足以达到上述数值,便可以脱离地球引力的控制,即

所以

  

 

 12、有效口径(D)

  指望远镜的通光直径,即望远镜入射光瞳直径。

望远镜的口径愈大,聚光本领就愈强,愈能观测到更暗弱的天体,它反映了望远镜观测天体的能力,因此,爱好者在经济条件许可的情况下,应选择较大口径的望远镜。

13、焦距(F)

  望远镜的焦距主要是指物镜的焦距。

物镜焦距F是天体摄影时底片比例尺的主要标志。

对于同一天体而言,焦距越长,天体在焦平面上成的像就越大。

14、相对口径(A):

A=D/F

  相对口径又称光力,它是望远镜的有效口径D与焦距F之比,它的倒数叫焦比(F/D)。

有效口径越大对观测行星、彗星、星系、星云等延伸天体是非常有利的,因为它们的成像照度与望远镜的口径平方成正比;

而流星等所谓线形天体的成像照度与相对口径A和有效口径D的积成正比。

故此,作天体摄影时,应注意选择合适的相对口径A或焦比。

15、视场(ω)

  能够被望远镜良好成像的区域所对应的天空角直径称望远镜的视场。

望远镜的视场与放大率成反比,放大率越大,视场越小。

不同的口径、不同的焦距、不同的光学系统与质量(像差),决定了望远镜的视场的大小(CCD的像数尺寸有时也会约束视场的大小);

一般科普用反射望远镜的视场小于1度,而施密特望远镜消像差比较好,故它的视场可达几十度。

16、放大率(M)

  目视望远镜的放大率等于物镜焦距与目镜焦距之比,也等于物镜入射光瞳与出射光瞳之比。

因此,只要变换不同的目镜就能改变望远镜的放大倍数,但由于受物镜分辨本领,大气视宁静度及出瞳直径不能过小等因素的影响,望远镜的放大倍率也不是可以无限制的增大;

一般情况应控制在物镜口径毫米数的1-2倍(最大不要超过300倍)。

17、.分辨角

  分辨角(δ)通常以角秒为单位,是指刚刚能被望远镜分辩开的天球上两发光点之间的角距,理论上根据光的衍射原理可得

δ=1.22λ/D(rad)

式中λ为入射光的波长,对于目视望远镜而言,以人眼最敏感的波长λ=555纳米来代替,并取物镜口径D以毫米计,则有:

δ”=140/D(mm)

由于大气视宁静度与望远镜系统像差等的影响,实际的分辨角要远大于此(一般介于0.5到2角秒间)。

18、分辨本领

望远镜的分辨本领由望远镜的分辨角的倒数来衡量,望远镜的分辨率愈高,愈能观测到更暗、更多的天体,所以说,高分辨率是望远镜最重要的性能指标之一。

19、贯穿本领

  指在晴朗的夜空将望远镜指向天顶,所能看到的最暗的天体,用星等来表示。

在无月夜的晴朗夜空,我们人的眼睛一般可以看见6等左右的星;

一架望远镜可以看见几等星主要是由望远镜的口径大小决定的,口径愈大,看见星等也就愈高(如50毫米的望远镜可看见10等星,500毫米的望远镜就可看到15等的星)。

20、第三宇宙速度:

据V2=G(M+m)(2/r-1/a)推出V=42千米/秒

因借地球公转速度29。

8千米/秒,V3=42-29。

8=12.2千米/秒

V2=11。

22+12。

22,推出V=16。

7千米每秒

21、多普勒效应计算公式的推导

一、普通物理书中的推导方法

大学普通物理学书中用如下方法推导多普勒效应计算公式。

设波源振动频率为f0,周期为T0,以v1表示波S相对于介质的速度,v2表示观察者A相对于介质的速度,波在介质中的传播速度为v0(如图1)。

χ

图1

1、波源不动(v1=0),观察者以v2远离波源。

在这种情况下,观察者在单位时间内接收到的完全波的数目将减少,波相对于观察者的速度为v0-v2,即在单位时间内波通过观察者的总距离为v0-v2,观察者接收的完全波的数目为

f1=

=

f0

(1)

⑴式就是接收到的频率。

当波源不动,观察者以速度v2(大小)靠近波源时,在单位时间里,波通过观察者的总距离为v0+v2,观察者接受到的频率为

f0(1′)

在这种情况下,我们将观察者的速度取负值代入

(1)式计算就可以了。

2、观察者不动(v2=0),波源以速度v1向着观察者运动。

由于波源向着观察者运动,在运动方向上波面被压密,使得波长减小,波长减小为

,波在介质中传播速度作为v0,所以观察者接收的频率为f2=

f0

(2)

当观察者不动,波源以速度v1离开观察者时,在观察者一边的波长增大为

,得到观察者接收的频率为f2=

f0,同样我们在这种情况时将波源的速度取负值,可统一用

(2)式计算。

3、波源与观察者均相对于介质运动。

如图1所示波源与观察者均沿x轴正方向运动,由于观察者的运动,单位时间内传过观察者的波总距离为v0-v2,又由于波源运动,波长减小为

,所以观察者接收的频率为

f3=

(3)

当波源与观察者均沿x轴负方向运动时,在上式中速度v1、v2均取负值计算。

当波源沿x轴正方向,观察者沿x轴负方向运动时,v1取正值,v2取负值。

当波源沿x轴负方向运动,观察者沿x轴正方向时,v1取负值,v2取正值。

二、多普勒效应计算公式的另一种推导方法

2004年江苏省高考物理试题第十六题(试题及解答略),参考答案给出了多普勒效应计算公式的另一种推导方法。

声源S间隔时间△t发出两个声信号,求观察者A接收到这两个声信号的时间间隔△t′(如图1),利用运动学知识,解得的结果是△t′=

△t.

如果声源振动的频率为f0周期为T0,声源发出相邻两个声信号的时间间隔△t=T0,观察者接收到两个相邻的声信号的时间间隔为△t′=

T0,这就是观察者接收到的声波振动的周期T,因而接收到的频率f=

(4)

(4)式是用来计算观察者接收脉冲信号频率的表达式,其表达结果与(3)式是相同的,这种方法不必考虑观察者接收的完全波的数目,也不便考虑由于波源运动造成波长的变化。

使用(4)式求观察者接收的声波的频率,应以S与A的连线为x轴,且规定由S指向A的方向为正方向,当v1,v2与x轴正方向相同时取正值,方向与x轴正方向相反时,取负值,S和A的方向异向时,其正负号规定与上述“一”中“3”相同。

三、多普勒效应的一般计算公式

上面得到的计算公式中,v1和v2的方向沿x轴才适用,如果v1和v2的方向是任意的,公式应发生怎样的变化呢?

多普勒现象在波源与观察者间的距离发生变化时才出现。

当波源与观察者的速度v1和v2大小相等,方向相同时,由(4)式可知,观察者接收的频率仍为f0。

如果波源不动,即v1=0,观察者的速度v2垂直于x轴(如图2)时,接收的频率不变。

如果观察者不动(v2=0),波源的速度v1垂直于x轴,接收的频率仍不变。

A

图2图3

当波源的速度v1观察者的速度v2为任意方向,如图3所示,v1与x轴正方向成α角,v2与x轴正方向成β角时,我们只要将v1和v2正交分解,垂直于x轴的分量不产生多普勒效应,沿x轴的分量产生多普勒效应,声源振动频率为f0时,观察者接收的频率应为

f=

(5)

在(5)式中,0°

≤α≤180°

,0°

≤β≤180°

,当夹角取0°

时,速度沿x轴正方向,当夹角取180°

时,速度沿x轴负方向,这样(5)式就把产生多普勒勒效应的各种情况都概括了,因此(5)式是多普勒效应的一般计算公式。

以上推导,是否妥当,请专家斧正。

22、春分点的时角用来表示恒星时:

S=t(春分点恒星时)

23、S=t★+a★(S恒星时,t★某恒星时角,a★某恒星赤经)

24、中天时某一恒星的时角t★=0

25、因此任何时刻的恒星时等于当时中天恒星的赤经S=a★

26、河外星系退行速度公式

  V=KD(K:

哈勃常数,当前的估算值为每百万秒差距每秒70千米;

27、1等星与6等星,星等相差5等,他们的亮度相差100倍,若相邻两星等的亮度比率为R,则有R5=100,推出R=2.512

28、现代强大的望远镜能观25等的暗星

29、假定有两颗恒星,其星等为m和m0(m>m0),亮度E和E0的比率为:

E0/E=2.512m-m0

两边取对数有:

m-m0=2.5㏒(E0/E)

30、如果0等星的亮度是1,则:

m=-2.5㏒E

31、EM表示绝对亮度,Em表示视亮度,则有:

EM/Em=2.512m-M,EM/Em=d2/102,,推出

M=m+5-5㏒d

(绝对星等M等于视星等m加5减5倍的d距离的对数,d以秒差距为单位)

32、多普勒效应红移公式

相邻的两个波峰到达观察者那里所需的时间就为:

T’=T+VT/c

这时到达观察者那里的两个相邻的波列的距离,即波长就变为:

λ’=cT+VT

这两个波长的比值为:

λ’/λ=T’/T=1+V/c

即波长增加了V/c,我们把这个相对增加量就成为红移量,它取决于光源的远离速度。

由于一般情况下V<

<

c,所以看不到光谱的红移现象;

仅当V与c可以比较时,才有可能出现较为明显的红移现象。

例如室女座星系团正以约1000公里/秒的速度离开我们的银河系,于是它的频谱上任何谱线的波长都要比正常值大一个比率:

λ’/λ=1+V/c=1+10000/300000=1.0033

若光源是向着观察者运动的,这时只需将以上公式中V改为-V就可以了。

所不同的是,这时将出现光的蓝移现象。

33、红移量Z:

Z=V/c

z=[(c+V)/(c-V)]1/2-1

天体的光谱红移量定义为

红移如果是由多普勒效应引起的,从红移量z就可以推算出退行速度。

在牛顿力学体系中,计算公式为:

v=z·

c,显然z不能大于1,否则v将超过c。

在v较大的情况下,就不能使用这一简单公式,而要使用按相对论推出的公式:

在这一公式下,z可以取任意大的值,v都不会超过c。

类星体的红移量很大,

Z=[(c+v)/(c-v)]^0.5-1≈v/c

33、提丢斯一波得定则(到海王星就不准了)

取一个数列:

0、1、2、4、8、16、32、64,在每个数上乘3加4,再用得到的数除以10,结果就是各大行星离太阳的平均距离。

比如水星(0×

3+4)÷

10=0.4

金星(1×

10=0.7

地球(2×

10=1.0

火星(4×

10=1.6

根据该定则得到下表:

单位:

天文单位

水星

金星

地球

火星

木星

土星

天王星

行星的实际距离

0.387

0.723

1.000

1.524

5.203

9.539

19.267

定则的距离

0.4

0.7

1.0

1.6

2.8

5.2

10.0

19.6

0.4水星

(2n×

3+4)/10条件(从金星开始依次n=0、1、2、3、、、、注意小行星带)

34、在天体运动中,以T1、T2……分别表示任意两行星的绕日运动固有周期,则两行星的会合运动周期1/T1-21T11T2。

35、恒星时=太阳时+太阳赤经-12时

恒星时=(平时+时差)+太阳赤经-12时。

36、太阳每年在天球上是运动一周(360度或24h),即太阳每年3月21日(春分)开始α。

=0h,逐渐增加,每个月太阳赤经增加2h,约每15天太阳赤经增加1h,每天约增加4m,可按此推算任一天的太阳赤经的约数。

对于太阳的赤经α。

,如不需要精确度很高时,可以从太阳的几个特殊位置推算任一时期的α。

下表列出二分二至四季八个时期的α。

节气

日期(阴历)

太阳赤经(时)

立春

2月5日左右

21

春分

3月21日左右

立夏

5月6日左右

3

夏至

6月22日左右

6

立秋

8月8日左右

9

秋分

9月23日左右

12

立冬

11月8日左右

15

冬至

12月22日左右

18

(5)下面给出一组天体出没,中天的公式,大家应记住:

cost=-tanφtanδ

cosA=sinδ/cosφ

这是天体上升时时角t当地纬度φ和天体赤纬δ的关系,至于天体上升的时角T和方位角A"

由下式求得:

T=-t

A"

=360度-A

以地方恒星时S和S'

分别表示上升和下落的地方恒星时时刻由

s=t+a得S=t+aS"

=T+a

下面给出天体中天的相关公式:

天体上中天时:

A=180度

t=0时

z=φ-δ或z=δ-φ

天体下中天时:

A"

=0度

T=12时

z"

=180度-φ-δ

天体上中天的高度公式还有另一种表达式:

在天顶之南上中天:

h=90-φ+δ

在天顶之北上中天:

h=90+φ-δ

(1)式中λ0为谱线位移前的波长,λ为观测到的波长。

  爱因斯坦喜欢用另一种,把光谱红移定义为

(2)式中v0为谱线位移前的频率,v为观测到的频率。

  二者的转换关系为

在讨论天体的视向运动时用Z较方便,因为天体的视向

运动速度u与视向运动引起的红移量的关系为

在讨论天体的引力红移时用Ze较方便,因为按广义相对

论天体的质量M及半径R与引力产生的红移量的关系为

(6)式中G为万有引力常数。

  当Z>

1时,(5)式会产生在u>

c的矛盾,有一种相

对论性公式为

可解决这种矛盾。

  根据

(2)式的定义在极端的情况观测到的频率v=0

时,有Ze=1,因此Ze是不可能大于1的,但(6)式

的右边却是可大于1的,所以黑洞理论认为当满足(6)式

右边大于1的天体的光是不可能离开该天体的,该天体将

成为一个“黑洞”。

按相对论中计算视向速度的公式

望远镜的分辨角=140(角秒)/D(毫米),D为物镜的有效口径。

例如,南京天文仪器广生产的120折反射天文望远镜的光学性能为:

主镜的有效口径为120mm,焦距为1500mm,相对口径为1/12.5,目镜放大倍率有:

37.5倍,60倍,100倍,200倍,理论分辨角为1"

一2"

,目视极限星等为12等,视场小于10。

它的寻星镜物镜有效口径为35mm,焦距为175mm,放大率为7倍,视场为500。

再次,对于望远镜,其最小分辨角(分辨力)α=Kλ/D,K为修正系数,D为物镜通光孔径

最小分辨角:

  “恰能分辨”的两个点光源的两衍射图样中心之间的距离,应等于艾里斑的半径。

此时,两个点光源在透镜处所张的角叫做最小分辨角,以

表示,进一步由理论计算可得

            

            

(1)

  其中

为透镜的直径。

  分辨率(分辨本领)

  为最小分辨角的倒数

             

作业 

05-19-04-02在迎面驶来的汽车上,两盏前灯相距

若仅考虑人眼圆形瞳孔的衍射效应,试问在汽车离人多远的地方,眼睛才能分辨这两盏前灯。

假设夜间人眼瞳孔直径约为

,而入射光波长为

解:

设两车灯间距为

,人与车相距为

,则

式中,

为瞳孔直径,由上两式可得:

则 

人眼分辨图象的细节能力称为分辨力,可用分辨角来衡量。

它也反映了人眼的视力。

在量值上,分辨角用θ表示,因为实际的θ很小,它大致和可分辨的紧邻的两点间距成正比,和观看距离L成反比,即θ≈d/L(弧度)=3438d/L(分),如图1所示。

分辨角的倒数为分辨力。

分辨力还和照度及景物相对对比度有关。

例 

设人眼在正常照度下的瞳孔直径约为3mm,而在可见光中,人眼最灵敏的波长为550nm,问

(1)人眼的最小分辨角有多大?

(2)若物体放在距人眼25cm(明视距离)处,则两物点间距为多大时才能被分辨。

(1)由式(15-31)知,人眼的最小分辨角为

(2)设两物点间的距离为

,它们与人眼的距离

,此时恰好能够被分辨。

这时,人眼的最小分辨角

,所以

两物点间的距离大于上述数值时才能分辨清楚。

恒星时=太阳时+太阳赤经-12时

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2