故选D.
【点评】本题考查了一元一次不等式组的解法:
解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:
同大取大;同小取小;大小小大中间找;大大小小找不到.
6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出
4的概率是()
个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于
考点】列表法与树状图法.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.
解答】解:
画树状图得:
故选C.
【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:
概率=所求情况数与总情况数之比.
7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,
则该文具店五月份销售铅笔的支数是()
22
A.100(1+x)B.100(1+x)C.100(1+x)D.100(1+2x)【考点】由实际问题抽象出一元二次方程.
【专题】增长率问题.
【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的
产量是100(1+x)2,据此列方程即可.
【解答】解:
若月平均增长率为x,则该文具店五月份销售铅笔的支数是:
100(1+x)2,
故选:
B.
【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再
经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.
cm)()
8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:
考点】由三视图判断几何体.
【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.
【解答】解:
由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何
体应该是圆锥;
根据三视图知:
该圆锥的母线长为8cm,底面半径为10÷2=5cm,
222
故表面积=πrl+π=rπ×5×8+π=6×55πcm.
故选:
B.
同时也体现了对空间想象能力方面的
【点评】考查学生对三视图掌握程度和灵活运用能力,考查.
二、填空题:
本大题共8小题,每小题3分,共24分
2
9.因式分解:
x2﹣3x=x(x﹣3).
【考点】因式分解-提公因式法.
【专题】因式分解.
【分析】确定公因式是x,然后提取公因式即可.【解答】解:
x2﹣3x=x(x﹣3).
故答案为:
x(x﹣3)【点评】本题考查因式分解,因式分解的步骤为:
一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.
10.若反比例函数y=的图象经过点(1,﹣6),则k的值为﹣6.【考点】反比例函数图象上点的坐标特征.
【分析】直接把点(1,﹣6)代入反比例函数y=,求出k的值即可.
【解答】解:
∵反比例函数y=的图象经过点(1,﹣6),
∴k=1×(﹣6)=﹣6.
故答案为:
﹣6.
【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标
一定适合此函数的解析式是解答此题的关键.
11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,【分析】由旋转的性质得:
AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:
∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,
∴BD===.
故答案为.
【点评】本题考查了旋转的性质:
①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.
12.下表是某校女子排球队队员的年龄分布
年龄/岁
13
14
15
16
频数
1
1
7
3
则该校女子排球队队员的平均年龄是15岁.【考点】加权平均数;频数与频率.
【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:
根据题意得:
(13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15岁.
故答案为:
15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.
13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24
【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.
【解答】解:
连接BD,交AC于点O,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO=4,
∴BO==3,
故BD=6,
则菱形的面积是:
×6×8=24.
BD的长是解题关键.
点评】此题主要考查了菱形的性质以及勾股定理,正确求出
2
14.若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是a>﹣
【考点】根的判别式;解一元一次不等式.
【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于a的一元一次不等式,
解不等式即可得出结论.
【解答】解:
2
∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,
2
∴△=12﹣4×2×(﹣a)=1+8a>0,
解得:
a>﹣.
故答案为:
a>﹣.
【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a>0.本题
属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.
15.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:
sin55°≈0,.8cos55°≈0,.6tan55°≈1).4.
考点】解直角三角形的应用-方向角问题.
分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.
解答】解:
如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,
∴PB=≈≈11,答:
此时渔船与灯塔P的距离约为11海里.
【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐
角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.
2
16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).
【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,
可得A点坐标.
【解答】解:
由C(0,c),D(m,c),得函数图象的对称轴是x=,
设A点坐标为(x,0),由A、B关于对称轴x=,得
=,
解得x=﹣2,
即A点坐标为(﹣2,0),故答案为:
(﹣2,0).
【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.
三、解答题:
本大题共4小题,17、18、19各9分20题12分,共39分
17.计算:
(
+1)(﹣1)+(﹣2)0﹣.
【考点】实数的运算;零指数幂.
【分析】本题涉及平方差公式、零指数幂、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【解答】解:
(+1)(﹣1)+(﹣2)0﹣
=5﹣1+1﹣3
=2.
【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.
18.先化简,再求值:
(2a+b)2﹣a(4a+3b),其中a=1,b=.
考点】整式的混合运算—化简求值.
【专题】计算题;整式.
【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,
把a与b的值代入计算即可求出值.
【解答】解:
原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,
当a=1,b=时,原式=+2.
【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.
19.如图,BD是?
ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:
AE=CF.
【考点】平行四边形的性质.
【专题】证明题.
【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出
∠ABE=∠CDF,求出∠AEB=∠CFD=90°,根据AAS推出△ABE≌△CDF,得出对应边相等即可.
【解答】证明:
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS),
∴AE=CF.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ABE≌△CDF是解决问题的关键.
20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根
据调查数据绘制的统计图表的一部分
分组
家庭用水量x/吨
家庭数/户
A
0≤x≤4.0
4
B
4.013
C
6.5D
9.0E
11.56
F
x>4.0
3
根据以上信息,解答下列问题
(1)家庭用水量在4.0被调查家庭数的百分比是30%;
(2)本次调查的家庭数为50户,家庭用水量在9.0庭数的百分比是18%;
(3)家庭用水量的中位数落在C组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.
【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.
【分析】
(1)观察表格和扇形统计图就可以得出结果;
(2)利用C组所占百分比及户数
可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出.
【解答】解:
(1)观察表格可得4.0(2)调查的家庭数为:
13÷26%=50,
6.550×30%=15,
D组9.050﹣4﹣13﹣6﹣3﹣15=9,
9.09÷50×100%=18%;
(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:
(1)13,30;
(2)50,18;(3)C;
(4)调查家庭中不超过9.0吨的户数有:
4+13+15=32,
=128(户),
答:
该月用水量不超过9.0吨的家庭数为128户.
【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.
四、解答题:
本大题共3小题,21、22各9分23题10分,共28分
21.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙
两车的速度.
【考点】一元一次方程的应用.
【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.
【解答】解:
设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,
解得,x=60,
则x+30=90,
即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.
考点】抛物线与x轴的交点;二次函数的性质.
分析】
(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得直线
BC的解析式;
2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m,),
解答】解:
(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两