第七章粘弹塑性模型的基本概念.docx

上传人:b****1 文档编号:14816722 上传时间:2023-06-27 格式:DOCX 页数:25 大小:500.62KB
下载 相关 举报
第七章粘弹塑性模型的基本概念.docx_第1页
第1页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第2页
第2页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第3页
第3页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第4页
第4页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第5页
第5页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第6页
第6页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第7页
第7页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第8页
第8页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第9页
第9页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第10页
第10页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第11页
第11页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第12页
第12页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第13页
第13页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第14页
第14页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第15页
第15页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第16页
第16页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第17页
第17页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第18页
第18页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第19页
第19页 / 共25页
第七章粘弹塑性模型的基本概念.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

第七章粘弹塑性模型的基本概念.docx

《第七章粘弹塑性模型的基本概念.docx》由会员分享,可在线阅读,更多相关《第七章粘弹塑性模型的基本概念.docx(25页珍藏版)》请在冰点文库上搜索。

第七章粘弹塑性模型的基本概念.docx

第七章粘弹塑性模型的基本概念

第七章粘弹塑性模型的基本概念

7.1引言

为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模

型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。

弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F独自反映材料本构关系的一个方面的特性。

理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。

实际工程材料的本构关系可以用这些简单模型的各种组合来构成。

理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图

7-1(a))。

其本构方程为虎克定律。

一维条件下,如单轴压缩和纯剪清况下,表达式分别为:

E

(7.1.1)

G(7.1.2)

式中E——弹性模量、

G剪切模量。

剪切模量与弹性模量和泊松比的关系如下式所示:

GE—(7.1.3)

21

式中——泊松比。

(7.1.4)

三维条件下本构方程可表示为下述形式:

mK

式中K——体积弹性模量。

(a)(b)

图7-1理想弹性模型

体积弹性模量与弹性模量和泊松比的关系如下式所示:

(7.1.6)

理想粘性模型又称牛顿粘滞体模型。

通常用一粘壶(或称阻尼器)表示(图7-2(a))。

粘壶内充满粘滞液体和一个可移动的活塞。

活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。

一维条件如单轴压缩或纯剪情况下,表达式分别为:

&

(7.1.7)

&(7.1.8)

式中、——粘滞系数由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。

与理想弹性体的方程相对应,类似式7.1.3,存在下述关系:

(7.1.9)

图7-2理想粘性模型

理想粘性体的体积变化与形状变化速率无关,

 

(7.1.10)

这与弹性不可压缩时的E=3G相对应。

在三维条件下理想粘性体本构方程可表示为:

Sj

(7.1.11)

理想塑性模型又称Saint-Venant塑性模型,或称刚塑性模型。

通常采用两块接触的粗糙面表示(图7-3(a))。

面上存在有一称晰脚擦阻力,与作用在面上的法向压力无关,是一常数。

若外作用力心婚此起始摩擦阻力,物体不发生变形。

一维条件如单轴压缩或此钾扮况,当轴向应力或剪应力小于某一数值时,物体不发生变形.当软祠应力或剪应力等于某数值时,物体产生流动,变形无限制增长.理想塑性模刮的体积应变等于零,即体积不发生改变。

在三维条件下理想塑性体的本构方程可表示为:

式中Hj——起始摩擦阻力,或称塑性条件;

――比例常数。

式7.1.12表明,理想塑性体的塑性应变偏量的变化率与应力偏量成正比

由理想弹性模型、理想粘性模型和理想塑性模型等简单模型可以组合成许多

复杂模型。

由理想弹性模型和理想塑性模型可以组合成理想弹塑性模型。

由弹性模型和粘性模型可以组合成各种粘弹性模型。

由粘性模型和塑性模型可以组合成各种粘塑性模型。

由弹性模型、粘性模型和塑性模型可以组合成各种粘弹塑性模型。

理想弹塑性模型已在第六章作了介绍。

在以下几节将对几种由简单模型组成的粘弹性模型、粘塑性模型和粘弹塑胜模型作简单介绍。

利用简单模型可以组合成各种复杂模型,从而可以建立各种材料的本构方程。

但是进一步的研究发现,许多材料的实际性状并不能满意地用简单的组合模型来描述,而目采用复杂的组合模型又常遇到数学上的困难。

因此,常常在试验的基础上,通过假设一实验一理论的方法建立材料的本构力程。

在本章的最后一节将简要介绍描述材料蠕变现象的蠕变力程。

7.2粘弹性模型

既具有弹性又具有粘性的性质称为粘弹性。

蠕变和应力松弛现象是人们熟悉的也是特别受重视的粘弹性胜质粘弹性性质的特点是在本构方程中除了有应力和应变项外,还包括有它们对时间导数的项。

对线性粘弹胜材料,其本构方程的一般表达式为:

mn

a0a1&Lamb0b1&Lbn(7.2.1)

式中ai,bi——与材料性质有关的参数。

下面首先介绍几种简单的粘弹性模型,然后再介绍较复杂的情况。

7.2.1Maxwell模型

Maxwell模型又称松弛模型。

它是由线性弹簧和牛顿枯壶串联组成,如图7-4(a)所示。

在串联条件下,作用在两元件上的应力相同,而总的应变应为两个元件应变的和,即

(7.2.2)或

&&&(7.2.3)

式中,——分别为线性弹簧和粘壶的应变;

&,&——分别为线性弹簧和粘壶的应变率。

考虑到线性弹簧有&&E和牛顿粘壶有&/,则式723可改写成:

(7.2.4)

E

 

图7-4Maxwoll模型

写成如式7.2.1的标准形式,上式可改写为:

n&&(7.2.5)式中n――松驰时间,n己,量纲为时间。

式7.2.5称为Maxwell方程。

若物体获得初始应变°以后总应变保持不变(图7-4b),即&0,式7.2.5

成为:

n&0(7.2.6)

积分上式,得

Cet/n(7.2.7)

式中C——积分常数。

应用初始条件,t0,0代人式7.2.7解出C,再代人式7.2.7,得

t/n

0e(7.2.8)

式7.2.8表示,Maxwell模型在保持总应变不变的条件下,发生应力随时间衰减的松弛现象,如图7-4c所示。

若物体获得初始应力°以后,保持应力不变,即&0,则式7.2.5成为:

(729)

式7.2.9表示材料应变率为常数,即应变随时间成比例地增长,因此变形随时间无限地发展。

下面讨论松弛试验的情况。

在松弛试验中,首先对试件施加应变°,然后保

持应变为定值,进而测量作为时间函数的应力值,确定松弛规律。

松弛试验中应

变可记为:

0ut(7.2.10)

式中ut——单位阶梯函数。

单位阶梯函数定义为:

0,tti

utti(7.2.11)

1,tti

在松弛试验中t10utt1可表示为ut。

将式7.2.10代人式7.2.5,得

&一

n

Et

(7.2.12)

式中

t――脉冲函数,

dt

ut。

dt

脉冲

函数定义为:

t

0,t0

(7.2.13)

t0

t

t

dt1

(7.2.14)

脉冲函数具有下述性质,对于任何连续函数ft,当t右时,有

t

ft1dft1utt1(7.2.15)

利用式7.2.15,积分式7.2.12,可得

tE0et/nut(7.2.16)

式7.2.16表示Maxwell模型的应力松弛规律,简记为:

tt0(7.2.17)

式中t——松弛函数,其表达式为

(7218)

t/n

tEeut

722Kelvln模型

Kelvln模型又称非松弛模型。

这种模型曾由W.Voigt和Kelvin提出,

故又称为Voigt—Kelvin模型。

它是由线性弹簧和牛顿粘壶并联组成,如图7-5

(a)所示。

在并联条件下,两个元件的应变相同,而总的应力应为两个元件的应力之和,即

 

(7220)

积分上式,得

上式表明在这种情况下应力不衰减。

0,然后

下面讨论蠕变试验的情况。

在蠕变试验中,首先对试件施加应力保持应力为定值来量取作为时间函数的应变值。

若取瞬时加载的时刻为t0,则加载过程可表示为:

oUt

(7223)

式中ut——单位阶梯函数。

(7224)

将式7.2.23代人式7.2.19,得

&—ut

注意到单位阶梯函数有如下性质

tt

f

ut|du1

f

t1

d

(7.2.25)

此处

为积分变量。

积分式

7.2.24,

t

01

E

etut

(7.2.26)

式中

1E_

n

式7.2.26表示Kelvin

模型的蠕变规律,

可简记为:

tt

(7.2.27)

式中

t蠕变函数。

蠕变函数的表达式为

1

t-1

E

etut

(7.2.28)

7.2.3

三元件粘弹性模型

图7-6a表示个三元件粘弹性模型。

它是由线性弹簧和

Kelvin模型串联组成,

包括二个线性弹簧和一个牛顿粘壶,共三个元件,故称三元件粘弹性模型。

表Kelvin模型的应变,表示与Kelvin模型串联的线性弹簧的应变,表示

Kelvin模型中线性弹簧中的应力,表示牛顿粘壶中的应力,和分别表示

总应力和总应变。

分析各元件的应力或应变相互间关系,不难得到下列各式:

(7.2.29)

(7230)

(7231)

E(7.2.32)

(7.2.33)

式中E――与Kelvin模型串联的线性弹簧的弹性模量;

E――Kelvin模型中线性弹簧的弹性模量;

――牛顿粘壶的粘滞系数。

结合式7.2.29至式7.2.33各式,消去组成元件中的应力和应变,得

EE&EEE&(7.2.34)

式7.2.34还可改写为:

n&nH&E(7.2.35)

式中

n(7.2.36)

EE

rLiia

厂壬

图7-6三元件粘弹性模型

上式表示的应变随时间的变化规律如图7-6(b)所示。

图中应变起始值为/H,最终值为/E,其应变速率由起始时的最大值逐渐趋于零。

0后总应变保持不变,即0,&o且在t0时,

若物体获得初始弹性应变

 

最初的H0衰减到最终值E0

对上式右端进行分部积分,

则式7.2.42可改写为

(7244)

 

传函数,它表示在时刻作用的应力对时刻t的变形的影响。

三元件粘弹性模型除了上述介绍的基本形式外,还有其它组成方式的三元件粘弹性模型。

如由Maxwell模型与一个粘壶并联组成,或由一个粘壶与Kelvin模型串联组成。

这些形式的本构方程读者自己不妨加以推导。

7.2.4广义Maxwell模型和广义Kelvin模型

增加组成模型的元件数,可以得到更为复杂的模型应用得较多的是广义

Maxwell模型和广义Kelvin模型。

 

图7-7广义Maxwell模型

广义Maxwell模型是由一个线性弹簧和一系列

Maxwell模型并联而成,如图7-7所示。

若t0时模型获得单位弹性应变01后,保持总应

变不变,模型中的应力随时间的变化应等于各简单模型之和,即

(7245)

GtE0Eet/ni

i

 

(7247)

dGt

dt

上式又可简写为:

(7248)

式中Rt

dGt

图7-8广义Kelvln模型

广义Kelvin模型是由一个Maxwell模型和一系列Kelvin模型串联而成,

如图7-8所示。

若t0时模型受到单位应力1后保持不变,它的总应变等

于各个简单模型的应变之和,即

Eo

 

式中Jt——蠕变柔度,等于单位应力引起的应变;

衰减系数,iEi/i,其倒数为延迟时间

若模型的应力用t表示,其本构力程可由叠加原理得到,

 

利用分部积分法,上式可改写为:

dJt

(7251)

记J0H,皆K七这样就得到了与式7244相同的线性遗传力

程,

(7252)

7.3粘塑性模型

既具有粘性又具有塑性性质称为粘塑性。

粘塑性体在荷载作用下,当应力达到某临界值时,屈服和流动现象发生,其变形速率与物体的粘性有关。

材料的粘塑性可由粘性元件(粘壶)和塑性元件(摩擦件)组合来描述。

Bingham模型是由理想刚塑性模型和牛顿粘壶并联而成,如图7-9(a)

所示。

显然,Bingham模型只有当应力达到屈服极限时,才开始变形。

在此以前表现为刚性,屈服以后,呈现出粘塑性性质。

其本构关系为:

s&(7.3.1)

 

(b)

(a)

图7-9Bingham模型

对Bingham模型,应力s时,应变为零。

如应力s时,应力可由式7.3.1

确定,而应变无限地增大。

7.4粘弹塑性模型

粘弹塑性是包含了弹性、粘性和塑性三力面的性质。

粘弹塑性可以由弹簧、粘壶和摩擦元件的各种组合来描述。

下面简略介绍一个三元件粘弹塑性模型。

图7-10表示一个三元件粘弹塑性模型,由线性弹簧、牛顿粘壶和一个摩擦件组成。

首先考虑线性强化情况,然后再分析理想粘弹塑性情况。

对这一模型,总的应变为:

evp

(741)

 

式中e弹性应变;

 

vp

粘塑性应变。

 

 

弹簧中应力与总的应力相等,即

(742)

(743)

s时,还有

vp

(7.4.6)

图7-10

三元件粘弹塑性模型

 

结合式744和式746,得

 

vp

Bvp

(747)

结合式7.4.1、式7.4.2和式

7.4.7,

BE

(748)

1

记一,称为介质流动参数,

则式7.4.8

可改写为:

sBvp

因此,粘塑性应变率为:

&psbvp

(7410)

 

(称为“过

式7.4.10表明粘塑性应变率是由超过稳态屈服应力的那部分应力值应力”)所决定的。

 

写为:

(7411)

 

 

式7.4.11的解为:

_AAs

EB

(7413)

对于理想粘塑性材料,B0,利用罗比达法则,式7.4.12可改写为

WAst

对于更复杂的弹粘塑性模型读者可参阅有关专著,这里不作进步介绍了。

7.5蠕变

物体的蠕变现象可以采用由一定数量的弹性、粘性和塑性元件组成的模型来描述。

但元件多了,计算相当复杂,且其关系不容易由试验确定。

在实际应用中,常常直接由试验来确定应力、应变和时间之间的关系。

下面简单介绍几种主要的蠕变方程的形式。

1•老化理论

老化理论假设蠕变应变与应力、时间之间具有某种函数关系,即

cf,t(7.5.1)

式中c——蠕变应变

物体的总应变将由三部分组成,即

(7.5.2)

式中c,p――分别为弹性应变和塑性应变

式中

沉降;

ha――土层或试样起始高度;

竖向应力增量;

p――主固结系数;

时间效应系数。

式7.5.4可改写成:

(7.5.5)

alogt

2•流动理论

流动理论认为蠕变应变速率与应力、时间之间存在某种简单的函数关系,即

&f,t(7.5.6)

式中——蠕变应变速率。

物体的总应变速率可表示为:

&&&&(7.5.7)

式中&e&p——分别表示弹性应变速率和塑性应变速率。

试验资料表明,正常固结粘土和超固结粘土,在排水或不排水条件下,其

应变速率和蠕变时间的关系在全对数坐标上呈线性关系。

应变速率与应力的关系

也是线性关系(图7-12)。

应变速率与时问的关系为:

In&In&t^qmln—(7.5.8)

t1

式中&——应变速率;

&ti,q——单位时间的应变速率,为应力q的函数;

ti单位时间(即1分钟);

m关系曲线的坡度,一般为0.75~1。

应变速率与应力的关系可表示为:

ln&ln&1,qoq

(7.5.9)

式中时应变速率,为蠕变时间t的函数;

q——偏应力,q13;

――关系曲线的坡度。

式7.5.9也可改写为:

m

&A上expq(7.5.10)

t1

式中A——t右时的曲线延长至q0时,在&坐标上的截距。

式7.5.10表示应变速率,时间t和应力q三者之间的关系,反映土的蠕变特性。

积分式7.5.10,得

A1m

texpqm1(7.5.11)

1m

 

0.2

0.02

o.oi

001J

0*

 

 

#0.25mm

 

o.04

02

0]

a004

32

0.OOJ

O.OOO—

40

图7-12

_■_—

5060\

应力q=(6—eJ*kPa应变速率与时间、应力的关系SinghandMitchell,1968)

 

Ain/expqm1,t1

(7.5.12)

式中

CeXPq;

 

t1时的应变值

3•遗传理论

1874年Boltzmann首先提出了线性遗传理论的本构力程,即

 

(7.5.13)

 

 

式中——时间t时的总应变;

t时间t时的应力;

Kt在瞬时作用的应力对时间的变形的影响函数(遗传函数),

当t增加时,函数值单调减小。

为了进一步了解遗传函数的意义,现考虑在t0时施加常应力的情况。

当常数时,式7.5.13可改写为:

1t

-Ktd(7.5.14)

E0

进行变量置换,令t,则式7.5.14可改写为:

1t

Kd(7.5.15)

E0

上式对时间t求导,得蠕变速率为:

&Kt(7.5.16)

&

于是Kt(7.5.17)

载作用下用试验确定遗传函数的简单方法。

思考题与习题

1.简述理想弹性模型、理想塑性模型和理想粘性模型的主要内并说明其物理意义。

2.什么是Maxwell模型、Kelvin模型和三元件粘弹性模型?

并能用简图表示。

3.试简要介绍Bingham模型。

4.举例说明粘弹塑性模型的主要特点。

5.试说明粘性流动与塑胜流动有什么区别?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2