外文翻译储氢的风力涡轮机水塔.docx

上传人:b****1 文档编号:15044302 上传时间:2023-06-29 格式:DOCX 页数:14 大小:29.94KB
下载 相关 举报
外文翻译储氢的风力涡轮机水塔.docx_第1页
第1页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第2页
第2页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第3页
第3页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第4页
第4页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第5页
第5页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第6页
第6页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第7页
第7页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第8页
第8页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第9页
第9页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第10页
第10页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第11页
第11页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第12页
第12页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第13页
第13页 / 共14页
外文翻译储氢的风力涡轮机水塔.docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

外文翻译储氢的风力涡轮机水塔.docx

《外文翻译储氢的风力涡轮机水塔.docx》由会员分享,可在线阅读,更多相关《外文翻译储氢的风力涡轮机水塔.docx(14页珍藏版)》请在冰点文库上搜索。

外文翻译储氢的风力涡轮机水塔.docx

外文翻译储氢的风力涡轮机水塔

外文翻译

Hydorgenstorageinwindturbinetowers

InternationalJournalofHydrogenEnergy29(2004)1277–1288RyanKottenstettea,JasonCotrellb;aSummerinternfromSantaClaraUniversity,1235MonroeSt,SantaClara,CA95050,USANationalWindTechnologyCentre,NationalRenewableEnergyLaboratory,1614ColeBlvd,Golden,CO80401,USAReceived18November2003;accepted15December2003

Abstract:

Modernutility-scalewindturbinetowersaretypicallyconicalsteelhydrogeninwhatwehavetermedahydrogentower.Thispaperexaminespotentialtechnicalbarrierstothistechnologyandidenti4esaminimumcostdesign.Wediscoveredthathydrogentowershavea“crossoverpressure”atwhichthecriticalmodeoffailurecrossesoverfromfatiguetobursting.Thecrossoverpressureformanyturbinetowersisbetween1.0and1:

5mPa(approximately10–15atm)Thehydrogentowerdesignresultingintheleastexpensivehydrogenstorageusesalloftheavailablevolumeforstorageandisdesignedatitscrossoveranadditional$83,000beyondthecostoftheconventionaltower)andwouldstore940kgofhydrogenat1:

1mPaofpressure.Theresultingincrementalstoragecostof$88/kgisapproximately30%ofthatforconventionalpressurevessels.PublishedbyElsevierLtdonbehalfoftheInternationalAssociationforHydrogenEnergy.

Keywords:

Windturbine;Tower;Hydrogen;Storage;Pressurevessel

1.Introduction

Low-costhydrogenstorageisrecognizedasacornerstoneofarenewables-hydrogeneconomy.Modernutility-scalewindturbinetowersaretypicallyconicalsteelstructuresthat,inadditiontosupportingthenacelle,couldbeusedtostoregaseoushydrogen.Wehavecoinedthephrasehydrogentowertodescribethistechnology.Duringhours,electrolyzerscoulduseenergyfromthewindturbinesorthegridtogeneratehydrogenandstoreitinturbinetowers.Therearemanypotentialusesforthisstoredfuel.Thestoredhydrogencouldlaterbeusedtogenerateelectricityviaafuelcellduringtimesofpeakdemand.Thiscapacityforenergystoragecouldsigni4cantlymitigatethedrawbackstotheAuctuatingnatureofthewindandprovideacostectivemeansofmeetingpeakdemand.Alternatively,thehydrogencouldbeusedforfuelcellvehiclesortransmittedtogaseoushydrogenpipelines.Storinghydrogeninawindturbinetowerappearstohavebeen4rstsuggestedbyLeeJayFingershattheNationalRenewableEnergyLaboratoryAnextensionofthehydrogentowerideaistostorehydrogeninshorewindturbinetowersandposiblyevenfoundations.shorefoundationsareoftenmonopileswhichcouldpotentiallyprovidelargeamountsofstoragewithoutectingthepositioningladder,andpowerelectronics.AsimilarideaforgeneratingandstoringhydrogeninthebaseofaAoatingshorewindturbinewasproposedbyWilliamHeronemusinthe1970sHowever,thisstudyfocusesontheeconomicsanddesignofonshorehydrogentowers.Theobjectivesofthispaperareasfollows:

(1)Identifytheparamountconsiderationsassociatedwithusingawindturbinetowerforhydrogenstorage.

(2)Proposeandanalyzeacostectivedesignforahydrogentower.03603199/$30.00PublishedbyElsevierLtdonbehalfoftheInternationalAssociationforHydrogenEnergy.

(3)Comparethecostofstorageinhydrogentowerstothecostofhydrogendtoragestorageinconwentionalpressurevessels

Therearemanycompetitivemethodsofstoringhydrogensuchasliquidhydrogenstorage,undergroundgeologicstorage,andtransmissionpipelinestorage.However,acomparisonwasmadeonlytoonestoragetechnologytolimitthescopeofthisstudy.Conventionalpressurevesseltech-nologywaschosenbecauseitisthemostwidelyavailableofthetechnologiesandthemethodmostlikelytobeusedforthemoderateamountsofhydrogenstorageconsideredinthisstudy.Thisstudyengagestheseobjectiveswithinthewiderwind-hydrogensystem,Variousbalanceofstationcostssuchastransportation,licensing,andpipingarethereforeoutsidethescopeofthisreport.Thispaperoutlinestheassumptionsmadeduringthisstudy,outlinesprimaryconsiderationsassociatedwithahydrogentower,highlightsdesigncharacteristicsofahydro-gentower,presentsseveralconceptualdesigns,andassessesthefeasibilityoftheconceptbasedoncomparisonstocon-ventionaltowersandpressurevessels

2.Benchmarksandassumptions

2.1.Hydrogengeneration

Thisstudyassumeselectrolyzersgeneratethehydrogentobestoredinthehydrogentowers.Aswilllaterbedemonstrated,themosteconomicalpressuresforstorageinhydrogentowersarebelow1:

5mPa.Thisstudyassumesthatprotonexchangemembrane(PME)andhigh-pressurealkalineelectrolyzerscanproducehtdrogenuptothispressurewithouttheuseofanadditionalcompressor

2.2.Conventionaltowers

Wechosetousethe1.5-MWtowermodelspeci4edintheWindPACTAdvancedWindTurbineDesignsStudyasourbaselineconventionaltowerThistowerwasmodeledafteraconventionaltowerbuiltfromfourtapered,tubular,steelsectionswhichareboltedtogether.Conventionaltowersarebuiltbyweldingtogethercylingenerallydecreaseinstepsasthetowertaperstosmallerdiametersathigherelevations.Forsimplicity,theWindPACTtowermodelinsteadassumesthewallthicknesstapersinasmoothlinearfashion.Themodelassumesaconstanttowerdiameter/wallthickness(d=t)ratioof320.Inordertosavematerialcosts,ahighdtratioisdesirable.However,forratiosabove320,towersbecomesubjecttolocalwallbuck-lingproblems.Additionalassumptionsregardingthetowerarethatthediameteratthetopisconstrainedtobeatleast1=2ofthebasediameter;thesteelusedforthetowerwallshasayieldstrengthof350mPa(about50ksi);andthecostofthetoweris$1.50/kg[3].Forthepurposesofthisstudy,othercostswereincluded,suchasapersonnelladder($10/ft),andatoweraccessdoor($20004xedcost).ThemodeledtowerisshowninFig.1withatabulationofcriticalvalueslistedinTable1.

2.3.Conventionalpressurevessels

Industrialpressurevesselsfornoncorrosivegasesareof-tenbuiltofcarbonsteelsimilartothatusedinwindturbinetowerconstruction.Althoughthemosteconomicalpressurevesselgeometryislongandslender,vesselsareoftenlimitedbyshippingconstraintstoapracticallengthofabout25m.Thislengthlimitationmeansthatinordertobetterdistributethehigh4xedcostsassociatedwith4ttingsandmanways,pressurevesselsaredesignedwithrelativelylargediametersandhighpressureratings.Althoughhigherpressuresreducethecostperkgofstoredgas,higherpressuresInthispaper,storagedevicesareoftencomparedbasedonacost/massratio.Thisratioisthecost(indollars)ofastoragedevicedividedbythemassofdeliverablehydrogengasstored.Thecost/massratioisusedbecauseitismoreconvenientthanthecommonpracticeofcitingavolumetriccapacityandapressureratingforeachstoragedevice.Useofthecost/massratiodoes,however,makethegivenvaluesaccurateonlyforhydrogenstorage.Deliverablehydrogenistheamountofhydrogeninthestoragereservoirthatcanbeextractedduringthenormaloperationofthestoragefacility.Inpressurevessels,acertainamountofgasisrequiredtopro-videacushion.Thisisthevolumeofgasthatmustremaininthestoragefacilitytoprovidetherequiredpressurizationtoextracttheremaininggas.Insomescenarios,suchasundergroundstorage,thevolumeofinaccessiblegascanbesigncosttoInthisstudy,theectofthiscushiongasisneglectedwhencomputingthestoregaseoushydrogenbecauseitissmallwhencomparedtootherstorage-relatedcosts.Inaddition,thisstudymodelshydrogenasanidealgas.Thisapproximationissulcientlyaccurateforthelowtemperaturesandpressuresconsideredinthisstudy.

3.Hydrogentowerconsiderations

Hydrogenstoragecreatesanumberofadditionalconsiderationsinwindturbinetowerdesign.Acceleratedat-mosphericcorrosiononthetowerinteriorandhydrogenembrittlementmayadverselyaectthetower’sductility,yieldstrength,andfatiguelife.Additionally,storinghydrogenatpressuresigni4cantlyincreasesthestressesonthetower.Therefore,wallreinforcementwilllikelyberequired.Astructuralanalysisisrequiredtoevaluatehowinternalpressuremaythetower’sdesignlife.

3.1.Corrosion

Bothatmosphericcorrosionandhydrogenembrittlementwillecttheinteriorofahydrogentower.Conventionalwindturbinetowersareprotectedinternallyandexternallyfromatmosphericcorrosionbypaint.Whenatowerisusedtostoreapressurizedgas,however,itbecomessubjecttotheguidelinessetforthintheAmericanSocietyofMechanicalEngineers(ASME)BoilerandPressureVesselCode.Thecodestatesthatpaintisnotanadequateformofprotectionfortheinteriorofpressurevessels.Enoughmaterialmustthereforebeaddedtoanticipateatmosphericcorrosion.Fortunately,theinteriorofahydrogentowerisacontrolledenvironment.HydrogenfromaPEMelectrolyzerdoesnotcontaincontaminantsthatcauseatmosphericcorrosion(ofprimaryconcernaresulfurdioxideandchlorine).

Theproducthydrogen(whichwouldbefullysaturatedwithwatervapor)couldbedriedtobelowthecriticalhumiditylevel(lessthan80%relativehumidity)atminimalcost.Undertheseconditions,atmosphericcorrosionwouldpenetratethesteel’ssurfaceatthenegligiblerateoflessthan0.01mperyear

3.2.Hydrogenattack

OneofthetwoprimarymodesofcorrosionfailurewhensteelisexposedtoahydrogenenvironmentishydrogenattackAlthoughsomesourcesdonotdistinguishhydrogenattackfromhydrogenembrittlement(HE),othersourcesdistinguishthembytheirdieringresponses

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2