毕业设计钢筋弯曲机设计.docx

上传人:b****7 文档编号:15263843 上传时间:2023-07-03 格式:DOCX 页数:57 大小:413.18KB
下载 相关 举报
毕业设计钢筋弯曲机设计.docx_第1页
第1页 / 共57页
毕业设计钢筋弯曲机设计.docx_第2页
第2页 / 共57页
毕业设计钢筋弯曲机设计.docx_第3页
第3页 / 共57页
毕业设计钢筋弯曲机设计.docx_第4页
第4页 / 共57页
毕业设计钢筋弯曲机设计.docx_第5页
第5页 / 共57页
毕业设计钢筋弯曲机设计.docx_第6页
第6页 / 共57页
毕业设计钢筋弯曲机设计.docx_第7页
第7页 / 共57页
毕业设计钢筋弯曲机设计.docx_第8页
第8页 / 共57页
毕业设计钢筋弯曲机设计.docx_第9页
第9页 / 共57页
毕业设计钢筋弯曲机设计.docx_第10页
第10页 / 共57页
毕业设计钢筋弯曲机设计.docx_第11页
第11页 / 共57页
毕业设计钢筋弯曲机设计.docx_第12页
第12页 / 共57页
毕业设计钢筋弯曲机设计.docx_第13页
第13页 / 共57页
毕业设计钢筋弯曲机设计.docx_第14页
第14页 / 共57页
毕业设计钢筋弯曲机设计.docx_第15页
第15页 / 共57页
毕业设计钢筋弯曲机设计.docx_第16页
第16页 / 共57页
毕业设计钢筋弯曲机设计.docx_第17页
第17页 / 共57页
毕业设计钢筋弯曲机设计.docx_第18页
第18页 / 共57页
毕业设计钢筋弯曲机设计.docx_第19页
第19页 / 共57页
毕业设计钢筋弯曲机设计.docx_第20页
第20页 / 共57页
亲,该文档总共57页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

毕业设计钢筋弯曲机设计.docx

《毕业设计钢筋弯曲机设计.docx》由会员分享,可在线阅读,更多相关《毕业设计钢筋弯曲机设计.docx(57页珍藏版)》请在冰点文库上搜索。

毕业设计钢筋弯曲机设计.docx

毕业设计钢筋弯曲机设计

毕业设计-钢筋弯曲机设计

 

本科毕业设计论文

 

设计题目钢筋弯曲机设计

学院机械与电气工程学院

专业机械设计制造及其自动化

班级机械103

学号1007200095

学生姓名陈上富

指导教师王一军老师

 

2014年5月15日

 

摘要钢筋弯曲机是现在建筑行业最主要的工程机械之一,主要用于弯曲各种型号钢筋以满足建筑工地施工。

现有的钢筋弯曲机主要是采用“带-两级齿轮-蜗轮蜗杆”的传动方式,其弊端在于蜗轮蜗杆传动效率不高,加工难度大。

此次设计的钢筋弯曲机针对直径在30mm以下的钢筋,设计采用了“带-三级齿轮”传动方案,可以大大提高钢筋弯曲机的传动效率。

本设计还对现有钢筋弯曲机的工作盘进行改良,使满足现有钢筋弯曲机对钢筋弯成不同角度的同时,还可以对钢筋弯成不同直径的弧形,以更大的满足建筑工地对钢筋弯曲成不同形状的要求。

关键字钢筋弯曲机;三级齿轮;工作盘;

ABSTRACTSteelbarbenderisoneofthemostsignificantengineeringmachineriesinarchitecturenowadays,whichisappliedtobendvarioustypesofrebartocaterfortheconstructioninbuildingsites.Theexistingsteelbarbendersmainlyadoptthedrivingmethodoftwo-stagegearandworm,butitsdisadvantageliesinthelowdrivingefficiencyofthegearandwormaswellasthedifficultprocess.Thus,thisdesignofthesteelbarbenderaimedattherebarunder30mmindiameterutilizesthedrivingapproachofthree-stagegearandworm,whichhelpsimprovethetransmissionefficiencyagreatdeal.Inthisdesign,theworkingplateofsteelbarbenderisimprovedsowellthatitcannotonlysatisfythedifferentbendinganglesofrebarthattheexistingsteelbarbenderrequiresbutalsomakerebarbecomearcsofdifferentdiameterstomeetthedemandthatrebarcanbebentintodifferentshapesinarchitecturesites.

KEYWORDSsteelbarbender;three-stagegear;workingplate

 

钢筋弯曲机设计

1.前言

随着我国建筑行业这几年的飞速发展,建筑机械类行业也伴随快速发展,钢筋弯曲机、钢筋弯箍机、钢筋弯弧机、钢筋调直机、切断机等等一系列建筑机械应用十分广泛。

目前在工程应用上使用的比较广泛的是国产GW40型钢筋弯曲机,它的主要特点是构造简单、适用性比较强,可以把直径在40mm以下的建筑钢筋弯弯曲成不同的角度。

现如今我国对钢筋弯曲成形的技术也有了比较高的水平,钢筋弯曲机已经出现了多种型号和弯曲类型,如由中国建筑科学研究院建筑机械化研究所与沈阳市建筑施工机械厂共同研制的GW32型,GW40型钢筋弯曲机,,1986年11月相继在沈阳和合肥通过了部级技术鉴定,这两种新型的钢筋弯曲机都是在参照国外样机的基础上并结合我国的具体国情研制成功的换代新产品,其中GW32弯曲机填补了我国钢筋弯曲机系列产品的空白。

但现有的钢筋弯曲机大多数是手动或者半自动,而且功能单一,只能将钢筋弯曲成不同的角度,不能很好的满足建筑需求,而且现有的钢筋弯曲机几乎都是采用典型的“带-两级齿轮-蜗轮蜗杆”的传动方式,传动效率低下,能源耗损严重。

此次设计的钢筋弯曲机主要在传动方式上做了个改进,采用了“带-三级齿轮”的传动方式,大大的提高了传动效率,减少能耗,同时也减少了加工难度。

除此之外还对现有的钢筋弯曲机的工作盘进行一定的设计改进,变得简单实用并且具有通用性,除了可以把不同直径的钢筋弯曲成所需角度,同时也可以通过工作盘的调节,把钢筋弯成不同直径的弧形,解决了以往钢筋弯曲机功能单一的问题,不用再购置钢筋弯弧机类似机器,造成资源资金的浪费。

2.系统工作原理及传动方案选择

 

钢筋弯曲机是建筑行业中使用最为广泛的建筑机械之一,它主要利用电动机传动的扭矩,通过工作盘将钢筋弯曲成不同角度。

典型的钢筋弯曲机的传动方式都是二级齿轮+蜗轮蜗杆的传递方式,传动效率低下。

改变钢筋弯曲机的传动方式,提高传动效率,是本次设计的着重点之一。

2.1钢筋弯曲机的工作框图

本设计的钢筋弯曲机主要由控制设备、电动机、带轮、减速箱和工作台几部分组成,其中减速箱由三级齿轮组成。

2.2钢筋弯曲机的工作原理

钢筋弯曲机的工作机构是一个安装在垂直的主轴上旋转的圆盘,如图2-2所示,把钢筋放在下图中虚线的位置,挡料支承销轴固定在机床上,中心轴和压弯轴安装在工作圆盘上,主轴转动带动工作圆盘转动,将钢筋弯曲。

为了适用于不同直径的钢筋,在工作圆盘上多开几个孔,用来插弯曲轴,也可以换成不同直径的中心轴,以达到弯曲不同直径钢筋的目的。

当想把钢筋弯成弧形时,可以在工作盘上插上一个圆盘(如下图2-3),调节燕尾槽的滑动体,钢筋通过两个套筒,随着圆盘的转动,可以把钢筋弯成弧形,调节滑动体,可以实现弯曲成不同形状的钢筋弧形[1][2]。

‘’

设两套筒轴心的连线与圆盘切线的距离为L,d为钢筋直径,R为弧形钢筋的曲线半径。

可由勾股定理解出。

(R+d+r)2=(L/2)2+(R一x)2

这样,要加工成型任意弧度的弧形钢筋,只需通过调节滑动体调整x距离即可,

 

2.3钢筋弯曲机传动方案选择

2.3.1典型的钢筋弯曲机传动方案

现行的钢筋弯曲机主要有两种传动方案[3],一种为电机通过一级带传动、两级齿轮传动、一级蜗轮蜗杆传动,简称蜗轮蜗杆传动方案,,如图2-5所示;另一种为电机通过一级带传动、三级齿轮传动,简称全齿轮传动方案,如图2-6。

图2-5蜗轮蜗杆传动[4]

图2-6全齿轮传动[4]

2.3.2钢筋弯曲机的传动效率

在计算钢筋弯曲机的传动效率[4]的两种传动方式时,为了更方便的分析比较,略去带传动及各支承轴承处的效率损失。

(1)蜗轮蜗杆传动

蜗轮蜗杆传动的效率

η=η1η2η3

式中,η1为第1级齿轮传动效率,取0.98;η2为第2级齿轮传动效率,取0.98;η3为蜗杆传动效率,这是本文分析的关键,而

η3=η31η32η33

式中,η31为搅油及溅油效率,它与装油量、回转件转速和浸油深度等有关,取0.96;η32为轴承效率,在此不计功率损失;η33为蜗轮螺旋副啮合效率。

当蜗杆主动时

η33=tanγ /tan(γ +ρν)

式中,,γ 为分度圆柱导程角,ρν为啮合摩擦角,由啮合摩擦系数μ确定,即ρν=tan-1μ

大多数生产厂家的蜗杆采用45#钢,蜗轮采用灰铸铁(或球铁),而导程角12°左右,蜗杆的分度圆直径d=76mm左右,其蜗轮蜗杆表面的滑动速度

Vs=π×d×n/(6×104)。

代入相关参数计算得Vs≈0.598m/s。

根据机械设计手册表23.5—14有ρν≈5°43′

η33=tan12°/tan(12°+5°43′)≈0.66。

故η3=0.96×0.66=0.639,

即η=0.98×0.98×0.639=0.61。

(2)全齿轮传动

全齿轮传动的效率

η=η1η2η3

式中,η1、η2、η3分别为第1,2,3级齿轮传动的效率,均取为0.98,则

η=0.94.

2.3.3传动效率的比较

通过两种传动方案的比较,蜗轮蜗杆的传动主要有以下几点不足[5]:

1)蜗轮蜗杆传动效率比较低,只是全齿轮传动的65%,,;2)由于蜗轮蜗杆啮合面间存在相当大的滑动速度,故齿面容易产生磨损和发热,对润滑条件要求较高;3)蜗轮蜗杆的加工较困难,不适合批量生产;4)因为弯曲机的工作强度和工作时间都比较高,蜗轮比较容易磨损,尤其是在缺少润滑的情况下,蜗轮很快就磨损失效,当更换蜗轮时互换性不好,更换较困难。

所以传动方案的话,选择一级带传动、三级齿轮传动。

3.主参数确定及结构设计计算

 

这一章通过对钢筋的受力分析确定所需的最大扭矩,从而确定钢筋弯曲机的各参数,然后进行钢筋弯曲机的结构设计及计算。

3.1钢筋弯曲受力分析

钢筋的受力情况[6]如下图3-7,设弯曲钢筋所需弯矩:

式中:

F为拔料杆对钢筋的作用力,F1为F的径向分力,α为F与钢筋轴线夹角

当M一定时,α越大则拔料杆及主轴径向负荷越小;α=arcos(L3/L4),当L4越大时,α就越大;

因此,弯曲机的工作盘应加大直径,增大拔料杆中心到主轴中心距离L4

3.2弯矩计算及电机选择

3.2.1弯矩计算

根据钢筋弯曲机弯曲钢筋扭矩计算公式[7]

(1)按Ф30螺纹钢筋公称直径计算

M0=K1Wσs

式中,M0为始弯矩,W为抗弯截面模数,W=πd3/32,K1为截面系数,对圆截面K1=16/3π=1.7;对于25MnSi螺纹钢筋σs=335(N/mm2),则得出始弯矩M0=1508.8(N·m)

(2)钢筋变形硬化后的终弯矩

钢筋在塑性变形阶段出现变形硬化(强化),产生变形硬化后的终弯矩:

M=(K1+K0/2Rx)Wσs

式中,K0为强化系数,K0=E/δp=2.1/δp=0.21/0.14=1.5,δp为延伸率,25MnSi的δp=14%,Rx=R/d0,R为弯心直径,R=3d0,则得出终弯矩M=1731.1(N·m)

(3)钢筋弯曲所需弯矩

Mt=[(M0+M)/2]·K=1701(N·m)

式中,K为弯曲时的滚动摩擦系数,K=1.05

3.2.2电动机选择

由功率扭矩关系公式A0=T·n/9550=3KW,

n=16.8

考虑到部分机械效率η=0.8,则电动机最大负载功率

A=A0/η=3/0.8=3.75(KW)

电动机选用Y系列三相异步电动机,型号为Y112M-4,额定功率P=4KW,转速n1=1440r/min

3.3主参数确定

(1)传动比分配

设减速器输入轴转速n1=514r/min,皮带轮的传动比

i0=1440r/min/514r/min=2.8

三级齿轮传动比的分配,根据文献《三级齿轮传动最佳传动比配比的研究》[8]得出各级传动比的最佳分配为:

i1=(4i)1/7

i2=i12/

i3=i22/

根据输出转速为16.8r/min

总传动比i=514/16.8=30.6,所以

i1=(4i)1/7=1.987

i2=i12/

=2.792

i3=i22/

=5.512

所以选最后取整i1=2,i1=2.8,i1=5.5即可满足精度要求.

(2)计算各轴转速

nI=n电机=1440r/min

n

=nI/i带1=514.3=1440/2.8=514.3(r/min)

n

=n

/i/2=257.15(r/min)

nⅣ=n

/i1=257.15/2.8=91.84(r/min)

nⅤ=n

/i1=91.84/5.5=16.7(r/min)

(3)计算各轴的功率

P

=P工作=3.75KW

P

=P

×η带=3.75×0.96=3.6KW

P

=P

×η轴承×η齿轮=3.6×0.98×0.96

=3.39KW

PⅣ=PⅢ×η轴承×η齿轮=3.39×0.98×0.96

=3.19KW

PⅤ=PⅣ×η轴承×η齿轮=2.55×0.98×0.96

=3KW

(4)计算各轴扭矩

T

=9550P

/n

=9550×3.75/1440

=24.87N·m

T

=9550P

/n

=9550×3.6/514.3

=66.85N·m

T

=9550P

/n

=9550×3.39/257.15

=125.9N·m

TⅣ=9550PⅣ/nⅣ=9550×3.19/91.84

=331.7N·m

TⅤ=9550PⅤ/nⅤ=9550×3/16.7

=1715.56N·m

 

表3-1各轴的运动参数

轴名

功率P(kw)

转矩T(

转速n(r/min)

传动比i

I轴(电机轴)

3.75

24.87

1440

II轴

3.60

66.85

514.3

2.8

III轴

3.39

125.9

257.15

2

3.19

331.7

91.84

2.8

3

1715.56

16.7

5.5

3.4V带轮设计

(1)确定计算功率

设带轮每天工作大于16小时

由《机械设计》[9]P156表8-7得:

工作情况系数kA=1.2

计算功率PC=KAP=1.2×3.75=4.5KW

P为所需传递的额定功率

(2)确定V带带型

根据PC、由《机械设计》P157图8-11得:

选用A型V带

(3)确定带轮基准直径,并验算带速

由《机械设计》p155表8-6得,推荐的小带轮基准直径为75~100mm。

则取dd1=100mm>dmin=75

dd2=n1/n2·dd1=1440/514×100=280.15mm

由《机械设计》P157表8-8,取dd2=280mm

实际从动轮转速n2’=n1dd1/dd2=(1440×100)/280

=514.3r/min

转速误差为:

n2-n2’/n2=514.3-514/514

=-0.0006<0.05(允许)

带速V:

V=πdd1n1/60×1000

=π×100×1440/60×1000

=7.536m/s

在5~25m/s范围内,带速合适。

(4)确定带长和中心矩

根据《机械设计》P152式(5-14)得

1.7(dd1+dd2)≤a0≤2(dd1+dd2)

1.7(100+280)≤a0≤2×(100+280)

所以有:

266mm≤a0≤760mm

由《机械设计》P158式(8-22)得:

L0=2a0+1.57(dd1+dd2)+(dd2-dd1)/4a0

=2×500+1.57(100+280)+(280-100)2/(4×500)

=1612.8mm

根据《机械设计》P146表(8-2)取Ld=1600mm

根据《机械设计》P158式(8-23)得:

a≈a0+(Ld-L0)/2=500+(1600-1612.8)/2

=500-6.4

=493.6mm

(5)验算小带轮包角

α1=1800-(dd2-dd1)/a×57.30

=1800-(280-100)/493.6×57.30

=1800-20.90

=159.10>1200(适用)

(6)确定带的根数

根据《机械设计》P152表(8-4a)单根普通v带基本额定功率

P0=1.32KW

根据《机械设计》P153表(8-4b)单根普通v带基本额定功率的增量

△P0=0.17KW

根据《机械设计》P155表(8-5)包角修正系数

Kα=0.95

根据《机械设计》P146表(8-2)长度系数

KL=0.99

由《机械设计》P158式(8-26)得

Z=PC/Pr=PC/(P0+△P0)KαKL

=4.5/(1.32+0.17)×0.95×0.99

=3.21

取根数Z=4

(7)计算轴上压力

由《机械设计》P149表8-3查得q=0.1kg/m,由式(8-27)单根V带的初拉力:

F0=500(2.5-Kα)PC/KαZV+qV2

=[500×(2.5-0.95)×3.9/(0.95×3.21×7.54)+0.1×7.542]N

=137.14N

则作用在轴承的压力Fp,由《机械设计》P159式(8-28)

Fp=2ZF0sinα1/2=2×3.21×137.14sin159.1/2

=865.84N

(8)带轮设计简图

图3-2带轮设计简图

3.5齿轮设计

3.5.1第一级齿轮传动设计

◆选择齿轮类型、精度等级、材料及齿数

(1)按照设计选用直齿圆柱齿轮传动

(2)考虑钢筋弯曲机为一般工作机器,速度不高,参考《机械设计》p210表10-8,故选用7级精度。

(3)材料选择。

由《机械设计》p191表140-1,选择小齿轮材料为40Cr调质,齿面硬度为241~286HBS,取280HBS。

大齿轮选用45钢,调质处理,齿面硬度217~255HBS,取240HBS。

(4)选小齿轮齿数z1=24,大齿轮齿数z2=2×24=48

◆按齿面接触疲劳强度设计

由设计计算公式进行试算

(d1t为设计小齿轮直径;K为计算齿轮强度用的载荷系数;T1为小齿轮传递的转矩;φd为齿宽系数;u为齿轮传动比;ZE为材料的弹性影响系数;[σH]为许用接触应力)

(1)确定公式内有关参数如下

1)试选载荷系数kt=1.3

2)计算小齿轮传递的转矩

T1=9.55×106×P/n1=9.55×106×3.75/514.3

=69633.5N·mm

3)由表10-7,选取齿宽系数φd=1

4)由表10-6查到材料锻钢的弹性影响系数ZE=189.8MPa1/2

5)由图10-21d由齿面硬度查到小齿轮的接触疲劳强度极限

σHlim1=600MPa;大齿轮的机床疲劳强度σHlim2=550MPa

6)由式10-13计算应力循环系数

N1=60n1jLh=60×514.3×1×(16×300×15)=2.22×109

N1=1.48×109/2=1.11×109

(j为齿轮每转一圈时,同一齿面啮合的次数;Lh为齿轮的工作寿命,单位为h)

7)由图10-19取接触疲劳寿命系数KHN1=0.92;KHN1=0.96

8)计算接触疲劳许用应力

安全系数s=1由式(10-12)得

[σH]1=KHN1σlim1/s=0.92×600=552MPa

[σH]2=KHN2σlim2/s=0.96×550=528MPa

(2)计算

1)试算小齿轮分度圆直径,代入[σH]中较小值

=

=60.286mm

2)计算圆周速度v

V=

πd1tn1/(60×1000)=π×60.286×514.3/(60×1000)=1.62m/s

3)计算齿宽b

b=φdd1t=1×60.286=60.286mm

4)计算齿宽与齿高之比

模数mt=

=60.286/24=2.512mm

齿高h=2.25mt=2.25×2.512=5.652mm

=60.286/5.652=10.67

5)计算载荷系数

根据V=1.62m/s,7级精度,由图10-8查到动载系数Kv=1.08

直齿轮齿间载荷分配系数KHα=KFα=1

由表10-2查到使用系数KA=1

由表10-4用插值法插得7级精度、小齿轮相对支承非对称布置时,KHβ=1.422

=10.67,KHβ=1.422查图10-13得KFβ=1.35,所以载荷系数

K=KAKVKHαKHβ=1×1.08×1×1.422=1.536

6)按实际的载荷系数校正所算的分度圆直径,由式(10-10a)得

d1=d1t

=60.286×

=63.733mm

7)计算模数m

m=

=

=2.66

◆按齿根弯曲强度设计

由式(10-5)得弯曲强度的设计公式为

(1)确定公式内的各计算数值

1)由图10-20c查到小齿轮的弯曲疲劳强度极限σFE1=500MPa;大齿轮的弯曲强度极限σFE2=380MPa

2)由图10-18取弯曲疲劳寿命系数KFN1=0.85,KFN2=0.86

3)计算弯曲疲劳许用应力

取弯曲疲劳安全系数S=1.3,由式(10-12)得

[σF]1=

=0.85×500/1.3=326.92MPa

[σF]2=

=0.86×380/1.3=251.38MPa

4)计算载荷系数K

K=KAKVKFαKFβ=1×1.08×1×1.35=1.458

5)查取齿形系数

由表10-5查到YFa1=2.65;YFa2=2.332

6)查取应力校正系数

由表10-5查到YSa1=1.58;YSa2=1.692

7)计算大、小齿轮的

并加以比较

=

=0.0128

=

=0.0157

大齿轮的数值大

(2)设计计算

mm=1.77

对比计算结果,由于齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数m的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取弯曲强度算得的模数1.77并就近圆整为标准值m=2,按接触强度算出的分度圆直径d1=63.733mm,算出小齿轮齿数

Z1=

=

=31.86≈32

大齿轮齿数Z2=2×32=64

这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。

◆几何尺寸计算

(1)计算分度圆直径

d1=Z1·m=32×2=64mm

d2=Z2·m=64×2=128mm

(2)计算中心距

(3)计算齿轮宽度

b=Φdd1=1×64=64mm

取B2=64mm,B1=70mm

◆小齿轮简图

图3-3小齿轮简图

3.5.2第二级齿轮传动设计

◆选择齿轮类型、精度等级、材料及齿数

(1)按照设计选用直齿圆柱齿轮传动

(2)考虑钢筋弯曲机为一般工作机器,速度不高,参考《机械设计》p210表10-8,故选用7级精度。

(3)材料选择。

由《机械设计》p191表140-1,选择小齿轮材料为40Cr调质,齿面硬度为241~286HBS,取280HBS。

大齿轮选用45钢,调质处理,齿面硬度217~255HBS,取240HBS。

(4)选小齿轮齿数z1=20,大齿轮齿数z2=2.8×20=56

◆按齿面接触疲劳强度设计

由设计计算公式进行试算

(d1t为设计小齿轮直径;K为计算齿轮强度用的载荷系数;T1为小齿轮传递的转矩;φd为齿宽系数;u为齿轮传动比;ZE为材料的弹性影响系数;[σH]为许用接触应力)

(1)确定公式内有关参数如下

1)试选载荷系数kt=1.3

2)计算小齿轮传递的转矩

T1=9.55×106×P/n1=9.55×106×3.39/257.15=125897.34N·mm

4)由表10-7选取齿宽系数φd=1

4)由表10-6查到材料锻钢的弹性影响系

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2