生理心理学复习资料.docx

上传人:b****7 文档编号:15797900 上传时间:2023-07-07 格式:DOCX 页数:20 大小:32.39KB
下载 相关 举报
生理心理学复习资料.docx_第1页
第1页 / 共20页
生理心理学复习资料.docx_第2页
第2页 / 共20页
生理心理学复习资料.docx_第3页
第3页 / 共20页
生理心理学复习资料.docx_第4页
第4页 / 共20页
生理心理学复习资料.docx_第5页
第5页 / 共20页
生理心理学复习资料.docx_第6页
第6页 / 共20页
生理心理学复习资料.docx_第7页
第7页 / 共20页
生理心理学复习资料.docx_第8页
第8页 / 共20页
生理心理学复习资料.docx_第9页
第9页 / 共20页
生理心理学复习资料.docx_第10页
第10页 / 共20页
生理心理学复习资料.docx_第11页
第11页 / 共20页
生理心理学复习资料.docx_第12页
第12页 / 共20页
生理心理学复习资料.docx_第13页
第13页 / 共20页
生理心理学复习资料.docx_第14页
第14页 / 共20页
生理心理学复习资料.docx_第15页
第15页 / 共20页
生理心理学复习资料.docx_第16页
第16页 / 共20页
生理心理学复习资料.docx_第17页
第17页 / 共20页
生理心理学复习资料.docx_第18页
第18页 / 共20页
生理心理学复习资料.docx_第19页
第19页 / 共20页
生理心理学复习资料.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

生理心理学复习资料.docx

《生理心理学复习资料.docx》由会员分享,可在线阅读,更多相关《生理心理学复习资料.docx(20页珍藏版)》请在冰点文库上搜索。

生理心理学复习资料.docx

生理心理学复习资料

生理心理

第一章导论

]

  一、神经解剖学知识

  1.神经解剖将神经系统分为两大部分:

即中枢神经系统和外周神经系统。

  2.中枢神经系统由颅腔里的脑和椎管内的脊髓组成。

颅腔里的脑又可分为大脑、小脑、间脑、中脑、桥脑和延脑六个脑区。

椎管内的脊髓分31节。

  3.外周神经系统是中枢发出的纤维,由12对脑神经和31对脊神经组成,它们分别传递躯干、头、面部的感觉与运动信息。

在脑、脊神经中都有支配内脏运动的纤维,分布于内脏、心血管和腺体,称之为植物神经(自主神经)。

根据植物神经的中枢部位、形态特点,可将其分为交感神经和副交感神经,在功能上彼此拮抗,共同调节和支配内脏活动。

  4.神经组织学根据脑与脊髓内的细胞聚集和纤维排列将其分为灰质、白质、神经核和纤维束。

灰质和神经核是由神经细胞体和神经细胞树突组成。

白质和纤维束是由神经细胞的轴突(神经纤维)组成。

  5.在大脑中,灰质分布在表层,称为大脑皮层;白质在深部,称为髓质。

在脊髓中正好相反,灰质在内,白质在外。

根据大脑皮层细胞层次不同,可将皮层分为古皮层、旧皮层和新皮层(占大脑皮层90%)。

  6.根据解剖部位从前向后,又可将大脑皮层分为额叶、顶叶、枕叶和颞叶。

颞叶以听觉功能为主。

枕叶以视觉功能为主。

顶叶为躯体感觉的高级中枢。

额叶以躯体的运动功能为主。

  7.前额叶皮层和颞、顶、枕皮层之间的联络区则与复杂知觉、注意和思维过程有关。

  8.边缘叶:

大脑的底面与大脑半球内侧缘的皮层-边缘叶(包括胼胝体下回、扣带回、海马回及其海马回深部的海马结构)。

  9.边缘系统:

边缘叶及皮层下一些脑结构,如丘脑、乳头体、中脑被盖等,共同构成边缘系统,具有内脏脑之称,是内脏功能和机体内的高级调节控制中枢,也是情绪、情感的调节中枢。

  10.在大脑髓质(白质)深部有一些神经核团,称基底神经节,包括尾状核、豆状核、杏仁核和屏状核。

尾状核与豆状核组成纹状体,对机体的运动功能具有调节作用。

  11.间脑位于大脑与中脑之间,被大脑两半球所遮盖,由丘脑、上丘脑、下丘脑和底丘脑四大部分组成。

  12.丘脑是皮层下除嗅觉外所有感觉的重要整合中枢。

它将传入的信息进行选择和整合后,再投射到大脑皮层的特定部位。

上丘脑参与嗅觉和某些激素的调节功能。

下丘脑是神经内分泌和内脏功能的调节中枢。

底丘脑是锥体外系的组成部分,调节肌张力,使运动功能得以正常进行。

  13.中脑、桥脑和延脑统称脑干,它的腹侧由脊髓与大脑之间的上下行纤维组成,传递神经信息。

  14.脑干的背侧面上下排列着12对脑神经核。

中脑的背侧有4个凸出,称四叠体,由一对上丘和一对下丘组成,分别对视、听信息进行加工。

脑干的背腹之间称被盖,由纵横交错的神经纤维和散在纤维中的许多大小不一、形态各异的神经细胞组成,即脑干网状结构,其上下行纤维弥散性投射,调节脑结构的兴奋性水平。

  15.小脑位于桥脑与延脑的背侧,其结构与大脑相似,外层是灰质,内层是白质,在白质的深部也有4对核,称之为中央核。

主要功能是调节肌肉的紧张度,以便维持姿势和平衡,顺利完成随意运动。

  二、神经细胞的基本知识

  1.神经组织由两类细胞组成,即神经元(神经细胞)和神经胶质细胞,两者的数目大体相等。

神经胶质细胞构成神经系统框架,并对神经元发挥组织营养的功能,不直接参与神经信息的传递。

  2.神经元由胞体、轴突和树突组成。

神经元之间发生关系的微细结构,称为突触。

突触由突触前神经末梢-终扣、突触后膜和两者之间大约20-50纳米的突触间隙所组成。

突触前兴奋的神经冲动并不能跳越突触间隙直接传向突触后成分,绝大多数情况下要通过化学传递机制,才能完成信息传递过程,突触根据功能可分兴奋和抑制性突触。

  3.神经系统的生理功能可以从脑整体水平和细胞水平上加以讨论:

  

(一)整体水平的神经生理学概念

  经典神经生理学通过实验分析的方法证明,脑活动是反射性的,每种反射活动的结构基础称为该反射的反射弧。

是由传入、传出和中枢3个部分组成。

机体的先天本能行为以遗传上确定的反射弧为基础,是同一种属共存的特异非条件反射活动。

与此不同,后天习得行为是建立在先天本能行为基础上,由暂时联系的机制而形成的条件反射。

是在个体经验基础上因人而异的反射活动。

  无论是非条件反射还是条件反射活动,在神经系统内都有兴奋和抑制两种神经过程,按一定的规律发生运动,即扩散与集中和相互诱导的运动规律。

脑内任何一点出现兴奋或抑制活动,都会立即迅速向四周扩散开来,然后再相对缓慢地集中回来。

某点上出现的神经过程,总会在一定距离的周围处诱导出相反的神经过程,这个相反的过程就会限制或妨碍原点的神经过程无限扩散。

  抑制过程也和兴奋过程一样,可分为非条件抑制和条件抑制两大类。

任一刺激强度过大,不但不会引起兴奋过程,相反会引起抑制,称为超限抑制。

当机体进行某项活动,周围出现异常可怕的声音时,总会情不自禁地怔一下,停止正在进行的活动,这种现象就是外抑制。

简言之,现时活动以外的新异刺激所引起的抑制过程就是外抑制。

超限抑制和外抑制都是先天的非条件抑制过程;消退抑制、分化抑制、延缓抑制和条件抑制,都是条件抑制过程,都需个体习得经验才能建立的抑制过程。

  脑电图(EEG):

大脑直流电背景上的自发交流电变化,经100万倍放大以后所得到的记录曲线。

当人们闭目养神,内心十分平静时记录到的脑电图多以8-13次/秒的节律变化为主要成分,故将其称为基本节律或α波。

如果这时突然受到刺激或内心激动起来,则脑电图的α波就会立即消失,为14-30次/秒的快波(β波)所取代。

这说明β波出现,代表大脑发生了兴奋过程。

相反,在闭目养神时逐渐睡着了,就会发现EEG的α波为4-7次/秒的?

  

(二)细胞神经生理学的基本概念

  利用微电极技术对细胞电活动进行记录,是细胞神经生理学的基本研究方法。

资料表明,神经元的兴奋过程,伴随着其单位发放的神经脉冲频率加快;抑制过程为单位发放频率降低。

无论频率加快还是减慢,每个脉冲的幅值不变。

换言之,神经元对刺激强度是按着“全或无”的规律进行调频式或数字式编码。

  “全或无”:

规则是指每个神经元都有一个刺激阈值,对阈值以下的刺激不发生反应;对阈值以上的刺激,不论其强弱均给出同样高度(幅值)的神经脉冲发放。

  突触后膜上的电位,无论是兴奋性突触后电位(EPSP),还是抑制性突触后电位、神经动作电位或细胞的单位发放后的后电位都是级量反应。

神经动作电位或细胞的单位发放后的后电位,无论是后兴奋电位还是后超级化电位都是级量反应。

此外,感觉器官的感受器官的感受器电位,也是级量反应。

在这类反应中,其电位的幅值随阈上刺激强度增大而变高,反应的频率并不发生变化,因为每个级量反应电位幅值缓慢增高后缓慢下降,且不能向周围迅速传导出去。

  神经元密密麻麻地分布着数千个突触,一个神经元上的许多突触后膜同时或间隔几毫秒相继出现EPSP或IPSP,则可以总和起来(空间总和与时间总和)。

如果总和的EPSP超过这个神经元的单位发放阈值,就会导致这个神经元全部细胞膜去极化,出现整个细胞为一个单位而产生70-110毫伏的短脉冲,这就是快速的单位发放。

它可以迅速沿神经元的轴突传递到末梢的突触,经突触的化学传递环节,再引起下一个神经元的突触后电位。

神经信息在脑内的传递过程,就是从一个神经元“全或无”的单位发放到下一个神经元突触后电位的级量反应总和后,再出现发放的过程,即“全或无”的变化和“级量反应”不断交替的过程。

  这一过程的物质基础:

40多年前,细胞电生理学家根据这种过程发生在细胞膜上,就断定细胞膜对细胞内外带电离子的选择通透性,是膜电位形成的物质基础。

在静息状态下,细胞膜外钠离子浓度较高,细胞膜内钾离子浓度较高,这类带电离子因膜内外的浓度差造成了膜内外大约负70-90毫伏电位差,称之为静息电位(极化现象)。

当这个神经元受到刺激从静息状态变为兴奋状态时,细胞膜首先出现去极化过程,即膜内的负电位迅速消失的过程,然而这种过程往往超过零点,使膜内由负电位变为正电位,这个反转过程称为反极化或超射。

所以,一个神经元单位发放的神经脉冲迅速上升部分,是由膜的去极化和反极化连续的变化过程。

这时细胞膜外的大量Na+流入细胞内,将此时的细胞膜称为钠膜;随后细胞膜又选择性地允许细胞内大量K+流向细胞外,称为钾膜。

这就使去极化电位迅速相继下降,就构成细胞单位发放或神经干上动作电位的下降部分,又称细胞膜复极化过程。

细胞的复极化过程也是个矫枉过正的过程,达到兴奋前内负外正的极化电位后,这个过程仍继续进行,使细胞膜出现了大约-90毫伏的后超级化电位。

后超级化电位是一种抑制性电位,使细胞处于短暂的抑制状态,这就决定了神经元单位发放只能是断续地脉冲,而不可能是连续恒定增高的电变化。

  综上所述,神经元单位发放或神经干上的动作电位,其脉冲的峰电位上升部分与膜的去极化和反极化过程形成,膜处于钠膜状态;峰电位的下降部分与复极化和反超计划过程而形成,此时膜为钾模状态。

  三、分子神经生物学的基本概念

  1.分子神经生物学是近20-30年迅速发展起来的研究领域。

它从分子水平上揭露神经信息传递和神经组织能量代谢的许多复杂机制,为人类探索大脑奥秘打开一扇大门。

  

(一)神经信息传递的生化机制采集者退散

  2.神经元单位发放所形成的神经冲动,沿轴突迅速传递,随轴突分枝达神经末梢之时,无法以电学机制超越20-50纳米的突触间隙,将神经冲动传到突触后膜。

所以,神经信息从一个神经元向另一个神经元传递时,突触的化学传递机制是必不可少的。

这种机制设计几十种分子量大小不一的生物活性物质,分别成为神经递质、调质、受体、通道蛋白细胞内信使和逆信使。

  3.神经递质:

凡是神经细胞间神经信息传递所中介的化学物质,神经递质大都是分子量较小的简单分子,包括胆碱类、单胺类、氨基酸类和多肽类等30多种物质。

  4.神经调质:

并不直接传递神经信息,而是调节神经信息传递过程的效率和速率,其发生作用的距离比神经递质大,但其化学组成和结构可能与同类神经递质相同,也可能与神经递质完全不同。

  5.逆信使:

神经信息在细胞传递过程中,除了这类参与从突触前膜向突触后膜传递信息的递质与受体结合外,由突触后释放一种更小的分子,迅速逆向扩散到突触前膜,调节化学传递的过程,将这类小分子物质称为逆信使。

已知的逆信使有腺苷和一氧化氮。

  6.受体:

是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性受体结合反应,产生相应的生物效应。

  7.1987年以来,逐渐将受体按其发生的生物效应机制和作用加以分类,如G-蛋白依存性受体家族、电压门控受体和自感受体等。

  8.神经细胞间信息传递的化学机制并非总是如此复杂,当那些电压门控受体与神经递质结合时,就会直接导致突触后膜的去极化,产生突触后电位。

  9.虽然脑重量约占全身体重的2%,但其耗氧量与耗能量却占全身的20%,而且99%利用葡萄糖为能源代谢底物,又不像肝脏、肌肉等其他组织那样,本身不具糖元储备,主要靠血液供应葡萄糖。

所以,脑对乏氧和血流量的不足是十分敏感的,可见脑功能与脑能量代谢有着密切关系。

第三章知觉

  第一节知觉的神经基础

  一、失认症与知觉的脑结构

  1.失认症是一类神经心理障碍,患者意识清晰,注意力适度,感觉系统与简单感受功能正常无恙,但却不能通过该感觉系统识别或再认物体,对该物体不能形成正常知觉。

这些失认症患者的感官、感觉神经、感觉通路和皮层初级感觉区的结构功能完全正常,但次级感觉皮层或联系区皮层存在着局部的器质性损伤。

根据脑损伤的部位和程度,可出现不同类型的失认症:

视觉失认症、听觉失认症和躯体失认症。

  2.视觉失认证:

常见的类型有统觉性失认证、联想性失认证、颜色失认证、面孔失认证;

  脑局灶损伤可分别在2-4视觉皮层区(V2、V3、V4)或颞下回、颞中回、颞上沟,也常见枕-颞间的联络纤维受损。

  ①统觉性失认症:

这类患者对一个复杂事物只能认知其个别属性,但不能同时认知事物的全部属性,故又称同时性视觉失认症。

这种失认症可能是V2区皮层以及与支配眼动的皮层结构间联系受损。

  ②联想性失认症:

患者可对复杂物体的各种属性分别得到感觉信息,也可将这些信息综合认知,很好完成复杂物体间的匹配任务,也能将物体的形状、颜色等正确地描述在纸上;但患者却不知物体的意义、用途,无法称呼物体的名称。

这类患者大多数是由于颞下回或枕-颞间联系受损而致。

这是视觉及其记忆功能和语言功能之间的功能、解体所造成的。

  ③面孔失认症:

面孔认知障碍分为两种类型:

熟人面孔失认症和陌生人面孔分辨障碍。

前者对站在面前的两个陌生人可知觉或分辨,也能根据单人面孔照片,指出该人在集体照片中的位置。

但病人不能单凭面孔确认亲人,却可凭借亲人的语声或熟悉的衣着加以确认。

这类病人大多数是双侧或右内侧枕-颞叶皮层之间的联系受损。

陌生人面孔分辨障碍的患者,对熟人确认正确无误,但对面前的陌生人却无法分辨。

对患者来说,周围的陌生人都是一付面孔。

所以,他们也不能根据单人面孔的照片,指出此人在集体照片中的位置。

这类患者大多数为两侧枕叶或右侧顶叶皮层受损。

  3.听觉失认症:

患者大脑初级听皮层(颞横回的41区)、内侧膝状体、听觉通路、听神经和耳的结构与功能无异常所见,但却不能根据语音形成语词知觉或不能分辨乐音的音调,也有患者不能区别说话人的嗓音。

词聋患者大多数左颞叶22区或42区次级听觉皮层受损所致。

  嗓音识别障碍又可分为两种类型,陌生人嗓声分辨障碍和熟人嗓音失认症。

  4.体觉失认症:

不能通过触觉识认物体。

  5.失认症是知觉障碍,不是因该感觉系统的损伤,而是由高层次脑中枢间的联络障碍所致。

从而证明知觉是许多脑结构和多种脑中枢共同活动的结果。

即使是以其中一种感觉系统为主的知觉,无论是视知觉、听知觉还是躯体知觉,也是这些感觉系统与注意、记忆、语言中枢共同活动的产物。

  二、知觉的细胞生理学基础

  6.超柱:

在大脑视觉皮层中,具有相同感受野的多种特征检测细胞聚集在一起,形成了对各种视觉属性综合反应的基本单元。

  许多研究报告都证明,在颞、顶、枕区之间的联络皮层和额叶联络区皮层中,都存在着“多模式感知细胞”,可以对多种信息发生反应,实现着多种感觉的综合反应过程。

这些多模式感知细胞,可能是知觉的细胞生理学基础。

总之,皮层中的超柱和联络区皮层多模式感知细胞,在知觉形成中具有重要作用,并可能是知觉的结构和功能单元。

  超柱仅实现同一种感觉模式中,各种属性的综合反应,形成简单的知觉;联络区皮层的多模式感知细胞,则将多种模式的感觉信息综合为复杂的知觉。

  7.精神盲:

两半球颞下回的损伤使猴不能识别现实刺激物。

它们看见蛇也视而不见,冷若冰霜,失去了正常猴所具有的那种恐惧反应能力。

因而将颞下回损伤造成的这种认知障碍,称为精神盲。

第二章感觉

  1.神经生理学将特化的感觉系统,统称为特异感觉系统和非特异感觉系统

  2.感受器的适应:

随着刺激物长时间持续作用,感受灵敏度下降,感受阈值增高,这种现象称为感受器的适应。

  3.感受野:

把有效地影响某一感觉细胞兴奋性的外周部位,称为该神经元的感受野。

如果把微电极插在视觉中枢的某个神经元上,记录其电活动,凡能引起其电活动显著变化的视野范围,就是该视觉神经的感受野。

  第一节视觉生理心理学

  1.眼的基本功能就是将外部世界千变万化的视觉刺激转换为视觉信息,这种基本功能的实现,依靠两种生理机制,即眼的折光成像机制和光感受机制。

  一、视觉信息的产生

  2.眼睛的随意运动有哪几种方式?

它的生理心理学意义是什么?

本文网

  通过眼外肌肉的反射活动,保证使运动着的物体或复杂物体在网膜上连续成像的机制,也就是眼动的生理学机制。

  ⑴随意性眼动:

眼睛的运动有许多方式,当我们观察位于视野一侧的景物又不允许头动时,两眼共同转向一侧。

两眼视轴发生同方向性运动,称为共轭运动。

正前方的物体从远处移向眼前时,为使其在视网膜上成像,两眼视轴均向鼻侧靠近,称为辐合。

物体由眼前近处移向远处时,双眼视轴均向两颞侧分开,称为分散。

辐合与分散的共同特点是两眼视轴总是反方向运动,称为辐辏运动。

辐辏运动和共轭运动都是眼睛的随意运动。

人们在观察客体时,有意识地使眼睛进行这些运动,以便使物像能最好地投射在视网膜上最灵敏的部位――中央窝上,从而得到最清楚的视觉。

  ⑵非随意的眼动:

  微扫视:

在两次扫视之间,眼球不动,称注视。

注视期间,眼睛并非绝对不动;事实上此时眼睛发生快速微颤。

微颤运动保证视网膜不断变换感受细胞对注视目标进行反映,从而克服了每个光感受细胞由于适应机制而引起的感受性降低。

  追随运动:

是观察缓慢运动物体时,眼睛跟随物体的运动方式,这种运动的角速度最大可达50°/秒。

  3.视杆细胞是产生明暗视觉信息的基础。

  颜色视觉的光生物化学基础在于视锥细胞。

  二、视觉信息的传递

  1.视网膜内的信息传递:

  视网膜分为内、外两层。

外层是色素上皮层,由色素细胞组成,由此产生和储存一些光化学物质。

内层是由5种神经细胞组成的神经层,从外向内依次为视感受细胞(视杆细胞和视锥细胞)、水平细胞、双极细胞、无足细胞和神经节细胞。

  细胞联系的一般规律是几个视感受细胞与1个双极细胞联系,几个双极细胞又与1个神经节细胞相关。

因此,多个视感受细胞只引起1个神经节细胞兴奋,故视敏度较差;但在视网膜中央凹部只有视锥细胞,每个视锥细胞只与1个双极细胞相联系,而这个双极细胞又与1个神经节细胞相联系。

因此,中央凹视敏度最高。

视锥细胞自中央凹向周围逐渐减少,所以中央凹周围的视敏度较差。

  除了神经节细胞之外,视网膜上的其他细胞对光刺激的反应均类似光感受细胞,根据光的相对强度变化给出级量反应,这种级量反应是缓慢的电变化,不能形成可传导的动作电位,但可与邻近细胞的慢变化发生时间和空间总和效应。

水平细胞和无足细胞对视觉信息横向联系的作用正是以慢电位变化的总和效应为基础的。

在视网膜上对光刺激的编码,只有神经节细胞才类似于脑内其他神经元,产生单位发放,对刺激强度按调频的方式给出神经编码。

视网膜的横向联系中,水平细胞和无足细胞对信息的处理和从光感受细胞至双极细胞间的信息传递都是以级量反应为基础的模拟过程,只有神经节细胞的信息传递才是全或无的数字化过程。

  2.视觉的传导通路:

外侧膝状体细胞发出的纤维经视放射投射至大脑皮层的初级视皮层(V1),继而与二级(V2)、三级(V3)和四级(V4)。

等次级视皮层发生联系。

V1区与简单视感觉有关,V2区与图形或客体的轮廓或运动感知有关,V4区主要与颜色觉有关。

  三、视觉信息加工与编码

  1.神经节细胞、外侧膝状体、皮层神经元感受野有什么不同?

  神经节细胞和外测膝状体神经元的感受野的形状和特点相似,即同心圆式的感受野。

  视网膜神经节细胞的感受野呈现同心圆式,其中心区和周边区之间总是拮抗的。

  外侧膝状体神经元的感受野与神经节细胞基本相似,形成中心区和周边区相互拮抗的同心圆式的感受野。

  皮层神经元的感受野分三种类型:

简单型、复杂型、超复杂型。

  简单型感受野面积较小,引起开反应和闭反应的区均呈直线型,两者分离形成平行直线,但两者可以存在空间总和效应;

  复杂型感受野较简单型大,呈长方形且不能区分出开反应与闭反应区,可以看成是由直线型简单感受野平行移动而成;

  超复杂型感受野的反应特性与复杂型相似,但有明显的终端抑制,即长方形的长度超过一定限度则有抑制效应。

  总之,简单型的细胞感受野是直线形,与图形边界线的觉察有关;复杂型和超复杂型细胞为长方形感受野,与对图形的边角或运动感知觉有关。

  2.功能柱:

具有相同感受野并具有相同功能的视皮层神经元,在垂直于皮层表面的方向上呈柱状分布,只对某一种视觉特征发生反应,从而形成了该种视觉特征的基本功能单位。

  目前,有两种功能柱理论,即特征提取功能柱和空间频率功能柱。

_心理咨询师考试

  第二节听觉生理心理学

  1.人能听到频谱大约为20-16000赫兹的各种声波,对400-1000赫兹的声波最敏感。

  2.物理声学分析声音的频率、振幅或声压以及复合声的频谱;心理声学考虑到这些参数与人类主观听觉间的关系,则提出相应的参数是音高、音强和音色。

  3.听觉信息的神经编码(理论):

德国黑尔姆霍兹听觉共振假说;位置理论;频率理论;美国贝克西行波学说。

  4.听觉通路:

耳蜗核-内侧膝状体,由内侧膝状体将听觉信息传送到颞叶的初级听皮层(41区)和次级听皮层(21区,22区,42区)

  5.关于内耳音高编码问题出现过许多理论;但归结起来不外乎细胞分工编码和频率编码两种。

  6.在外周和中枢内对音强编码的机制较为复杂,可分为极量反应式编码、调频式编码、细胞分工编码。

  7.声源空间定位的神经编码有两种基本方式:

锁相-时差编码和强度差编码。

  8.味觉通路:

舌的味觉传入冲动均达脑干孤束核,在这里交换神经元后上行至桥脑味觉区,最后达大脑皮质的前岛叶,这里是最高级味觉中枢。

  9.嗅觉通路:

主要经外测嗅纹止于前梨状区及杏仁核内侧部,由此转达到海马回钩皮层。

  10.躯体的感觉模式是多种多样的,我们可以将它们由表及里分成三个层次:

浅感觉、深感觉、内脏感觉。

  11.躯体浅感觉与深感觉传入径路:

浅感觉感受器兴奋所激发的神经冲动按躯体节段关系沿传入神经到达相应节段的脊髓神经节,由脊髓神经节细胞轴突的中枢支将神经冲动传入相应的脊髓感觉中枢。

由此发出二级纤维,形成脊髓丘脑前束和测束,两束上行至脑干后合并为脊髓丘系,主要传导轻触觉、痒觉、温度觉和痛觉的上行冲动,止于丘脑腹后外测核和后核,由此发出三级纤维经内囊投射至中央后回上2/3部。

  12.头部深感觉和浅感觉传入径路:

头面部的浅感觉通路,始于颅神经节,其细胞的中枢止于三叉神经感觉核。

三叉神经主核主要接受传递触压觉的冲动;三叉神经脊髓束核除接受传递触压觉外,还接受和传递痛觉和温度觉的冲动。

三叉神经的这两个感觉核发出了二级上行纤维,组成三叉丘系,止于丘脑腹后内侧核的三级感觉神经元,由此发出三级纤维经内囊达皮质中央后回的下1/3.

13.60年代神经生理学研究发现,丘脑旁束核和板内核是痛觉的重要中枢。

第四章注意的生理心理学理论

  非随意注意与朝向反射

  1.朝向反射:

朝向反射本质是脑内发展了外抑制过程。

新异刺激在脑内产生的强兴奋灶对其他脑区发生明显的负诱导,因而抑制了已建立的条件反射活动。

随着新异刺激的重复呈现,失去了它的新异性,在脑内逐渐发展了消退抑制过程,抑制了引起朝向反射的兴奋灶,于是朝向反射不复存在。

  神经活动模式匹配理论

  2.索科洛夫在朝向反应的研究中发现,它是一个包括许多脑结构在内的复杂功能系统。

这一功能系统的最显著特点是它在新刺激作用下形成的新异刺激模式与神经系统的活动模式之间的不匹配,是这种反应的生理基础。

具体地讲,这种机制发生在对刺激信息反应的传出神经元中,在这里将感觉神经元传入的信息模式和中间神经元保存的以前刺激痕迹的模式加以匹配,如果两个模式完全匹配,传出神经元不再发生反应。

两种模式不匹配就会导致传出神经元从不反应状态转变为反应状态。

  儿童注意缺陷障碍

  1.有些儿童的注意力难以集中,冲动任性、学习困难、暴发性情绪变换,甚至出现一些严重的行为问题,如打架、逃学、说谎、诈骗等。

一百多年前就曾经把这类儿童行为问题确定为多动症。

这些行为问题可能是由于儿童早期或产程中,脑受到轻度损伤而造成的,称轻度脑损伤。

的美女编辑们

  在这些儿童中,真正能发现脑轻度损伤病史的为数不多,因此,又以轻度脑功能失调的名称取而代之。

  美国精神疾病分类和诊断手册1980年将这类儿童行为问题归类为注意缺陷障碍,认为注意缺陷是这类儿童共同的突出问题。

这类儿童的主动性,随意注意能力极弱而

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2