常用应力强度因子计算方法比较.docx

上传人:b****7 文档编号:16029162 上传时间:2023-07-10 格式:DOCX 页数:25 大小:477.09KB
下载 相关 举报
常用应力强度因子计算方法比较.docx_第1页
第1页 / 共25页
常用应力强度因子计算方法比较.docx_第2页
第2页 / 共25页
常用应力强度因子计算方法比较.docx_第3页
第3页 / 共25页
常用应力强度因子计算方法比较.docx_第4页
第4页 / 共25页
常用应力强度因子计算方法比较.docx_第5页
第5页 / 共25页
常用应力强度因子计算方法比较.docx_第6页
第6页 / 共25页
常用应力强度因子计算方法比较.docx_第7页
第7页 / 共25页
常用应力强度因子计算方法比较.docx_第8页
第8页 / 共25页
常用应力强度因子计算方法比较.docx_第9页
第9页 / 共25页
常用应力强度因子计算方法比较.docx_第10页
第10页 / 共25页
常用应力强度因子计算方法比较.docx_第11页
第11页 / 共25页
常用应力强度因子计算方法比较.docx_第12页
第12页 / 共25页
常用应力强度因子计算方法比较.docx_第13页
第13页 / 共25页
常用应力强度因子计算方法比较.docx_第14页
第14页 / 共25页
常用应力强度因子计算方法比较.docx_第15页
第15页 / 共25页
常用应力强度因子计算方法比较.docx_第16页
第16页 / 共25页
常用应力强度因子计算方法比较.docx_第17页
第17页 / 共25页
常用应力强度因子计算方法比较.docx_第18页
第18页 / 共25页
常用应力强度因子计算方法比较.docx_第19页
第19页 / 共25页
常用应力强度因子计算方法比较.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

常用应力强度因子计算方法比较.docx

《常用应力强度因子计算方法比较.docx》由会员分享,可在线阅读,更多相关《常用应力强度因子计算方法比较.docx(25页珍藏版)》请在冰点文库上搜索。

常用应力强度因子计算方法比较.docx

常用应力强度因子计算方法比较

27thICAFSymposium–Jerusalem,5–7June2013

ThePursuitofK:

ReflectionsontheCurrentStateoftheArtin

StressIntensityFactorSolutionsfor

PracticalAerospaceApplications

R.CraigMcClung,1Yi-DerLee,1JosephW.Cardinal,1andYajunGuo21SouthwestResearchInstitute,SanAntonio,Texas,USA

2JacobsESCG,Houston,Texas,USA

Abstract:

Thestressintensityfactor(Kisthefoundationof

fracturemechanicsanalysisforaircraftstructures.Thispaper

providesseveralreflectionsonthecurrentstateoftheartinK

solutionmethodsusedforpracticalaerospaceapplications,

includingabriefhistoricalperspective,descriptionsofsome

recentandongoingadvances,andcommentsonsomeremaining

challenges.Examplesareselectivelydrawnfromtherecent

literature,fromrecentenhancementsintheNASGROand

DARWINsoftware,andfromnewresearch,emphasizing

integratedapproachesthatcombinedifferentmethodstocreate

engineeringtoolsforreal-worldanalysis.Verificationand

validationchallengesarehighlighted.

INTRODUCTION

Thestressintensityfactor(commonlydenotedKisthefoundationoffracturemechanics(FManalysisforaircraftstructures.Thisparameterdescribesthefirst-ordereffectsofstressmagnitudeanddistributionaswellasthegeometryofbothstructure/componentandcrack.Hence,thecalculationofKisoftenthemostsignificantstepinfatiguecrackgrowth(FCGlifeanalysis.ThispaperprovidesseveralreflectionsonthecurrentstateoftheartinKsolutionmethodsusedforpracticalaerospaceapplications,includingabriefhistoricalperspective,descriptionsofsomerecentandongoingadvances,andcommentsonsomeremainingchallenges.Noattemptismadetobeexhaustiveinthisreview—thatwouldbeadauntingtask—butkeycitationsarewovenintothepracticalexperiencesoftheauthors.

HISTORICALSURVEY

Handbooks

TheearlycompilationsofKsolutionsinhandbooksbyTada,Paris,andIrwin[1]andRookeandCartwright[2]wereinvaluablecontributions.ThosecompilerscollectedmanydifferentpublishedKsolutionsavailableatthetimewhilealso

R.C.McClung,Y.-D.Lee,J.W.Cardinal,andY.Guo2

contributingnewsolutionsfromtheirownresearch.However,thesehandbookshadsomepracticallimitations.Firstofall,manyofthesolutionswerepresentedingraphicalformbasedoncomplexnumericalcomputations(withoutanycorrespondingclosed-formequations,andsotheycouldnotbeimmediatelyincorporatedintoengineeringsoftwareforproductionuse.Second,manyofthesolutionswereforconfigurationswithoutimmediatepracticalvalue:

infinitebodies,pointloads,out-of-planeloadingmodes,etc.Whilemanyofthesesolutionsunquestionablyprovidedessentialfoundationsforlaterwork,theywereoftennotaccessibletotheeverydaypractitionerwhoneededtoanalyzerealcracksinrealstructures,anddosoquickly.

Closed-FormEquationsDerivedFromFiniteElementResults

NewmanandRaju(NRmadesignificantearlycontributionstopracticalstructuralanalysisbydevelopingclosed-formKequationsforsurfaceandcornercracksinsimplifiedfinitegeometries,oftenbasedonempiricalfitsoffiniteelement(FEsolutions.Forexample,alandmarkRaju-Newman(RNpaper[3]summarizedtheFEcalculationofKvaluesforsemi-ellipticalsurfacecracksinfinite-thicknessrectangularplatesunderuniformtension.Stretchingthestateoftheartofthattime,theyemployedFEmodelsusingupto6900degreesoffreedom(!

.Notingthatpreviouslypublishedsolutionsforthesamegeometryexhibitedlargevariations,theycarefullyverifiedtheirmodelingtechniquesandcomparedtheirresultsagainstotherreliablesourceswhereavailable.Theirkeyresultwasasummarytableofcorrectionfactorsforasimplematrixofnormalizedcrackshapesandcrackdepthsatvariousangularpositionsaroundthecrackfront.Newman-Raju[4]thenusedthesediscretedatatoderiveanempiricalequationthatcouldbeusedtocalculateKquicklyandaccuratelyforanycrackshapeandnormalizedsize(relativetoplatedimensionswithinthescopeoftheoriginalFEmatrix,whichnowincludedbothtensionandbending.Thissimpleequationhasremainedinwidespreadusetothepresentday.

Alaterpaper[5]summarizedadditionalworkbyRNtodevelopKequationsforellipticalembedded,surface,andcornercracksinplates,andsurfaceandcornercracksatholesunderuniformremotetension,againbuildingonpreviouslypublishedtabulationsofFEresults.Insomecases,theKequationsincludedadditionalcorrectionfactorsforfinitegeometryeffects(finitewidth,onecrackvs.twosymmetriccracksbasedontheoreticalconsiderationsorotherpublishedwork.NRlaterpublishedslightlymodifiedversionsoftheseequations[6].

TheNRsolutionsbegantobemorewidelydisseminatedandusedaftertheywereincorporatedintoearlyversionsoftheNASA/FLAGROcomputercode,whichwasoriginallydevelopedtosupportfracturecontrolforthespaceshuttleorbiterandotherspacestructures[7].TheFLAGROteamalsobegantoexpandandamendtheoriginalNRsolutionstoaccommodateotherloadingmodesandgeometricvariations,aswellastoaddresssomeperceivedaccuracyissues.Otherresearchersandcomputercodeshavesubsequentlycontributedtheirownderivativesofthese

ThePursuitofK3solutions.Itisaremarkabletestimonialtothesesolutionsthattheyarestillinwidespreaduseoverthirtyyearslater,eventhoughtheoriginalFEmodelswereverycoarsebycurrentstandards.

RecentFiniteElementMethods

Computationalpowerhasincreaseddramaticallyoverthelastthirtyyears,ofcourse,andsotheprospectofusingthispowertogenerateimprovedKsolutionshasgrownmoreandmoreattractive.TheidealsituationwouldbetobeabletogeneratetheexactKsolutionforeachproblemofinterestusingafaithfulFEmodeloftheactualconfigurationofinterest(andtoupdatethecrackmodelasthecrackgrows.Itiscertainlypossibletodothistoday,andinfactseveralcommercialcomputercodesofferthecapability.Thiscanbeanattractiveoptionforsolvingveryspecificproblems(suchasacriticalfieldcrackingissue,buttheresourcerequirements(includingthecomputationtimeitselfstillrenderthisapproachimpracticalasageneraldesigntoolforcomplexstructureswithmanyfracture-criticallocations.

However,theincreasedcomputationalpowerisbeingusedtoupdatetheolderengineeringapproaches(e.g.,NR.Attheleast,theoriginalmatricesofFEsolutionscanberevisitedwithfinermeshes,orexpandedtowidergeometrylimits.Furthermore,thenewpowercanbecoupledwithautomatedmeshconstructionandsolutionmethodstogeneratemuchlargenumbersofsolutionsforamuchwiderrangeofparameters.TherecentleadersinthisareahavebeenFawazandAndersson(FA,whohaveusedthep-versionFEmethod.Theybeganbyrevisitingthebasiccorner-crack-at-holegeometry,movingontodevelopalargedatabaseofsolutionsfortwounequalcornercracksatholes[8].“Large”issomethingofanunderstatementinthiscase:

theirsingle(orsymmetriccorner-crack-at-holedatabasecontained7150combinationsofthenon-dimensionalratiosR/t,a/t,anda/c.Thedifferentcombinationsofdiametrically-opposedunequalcornercracks(undertension,bending,orbearingloadpushedthetotalnumberofsolutionsoverfivemillion(nottomentionthateachKsolutionwasobtainedatalargenumberofpositionsaroundtheperimeterofthecrack.

Thiswealthofinformationcouldbeusedinseveraldifferentways.Initially,FAusedittoevaluatethelegacyRNsolutionsandNRequations.Theyfoundthattheoldersolutionswereremarkablygoodinmanyplacesandnotsogoodinafewothers.Thispromptedsomeeffortstodevelopempiricalcorrections(basedonthenewFEdatabasetotheoriginalempiricalfitstotheoriginalFEdatabase.Unfortunately,theproductoftwonecessarilyinaccurateempiricalfitsisitselfnecessarilystillinaccurate.

However,theavailabilityofsuchadensematrixofreliablenewFEsolutionssuggestedthatitmightbepreferabletousethismatrixdirectlyasamastertablefromwhichlocalinterpolationcouldbeperformed,henceeliminatinganyinaccuraciesofempiricalmulti-variablefits.Unfortunately,thesizeofthematrices

R.C.McClung,Y.-D.Lee,J.W.Cardinal,andY.Guo4

canresultinverysubstantialpenaltiesforcomputermemory(gigabytesofstorageforonlyonefamilyofcrackgeometriesand,toalesserextent,forprocessingtimeaswell.FAhavecontinuedtogenerateevenmoresolutions(literallymillionsandmillionsforothergeometryfamiliesinworkthatislargelyunpublishedatthiswriting.Whilethepromiseofsuchbountyisexciting,itisnotyetclearhowtheinformationcouldbestbeputtopracticaluse,giventhememoryburden.

This“FEdatabase”approachtoKsolutionsalsoretainstwootherdisadvantages.Firstofall,eventhedensematricesofautomatically-generatedFEsolutionscannotcaptureallofthefinitegeometryeffects,suchastheinfluenceofnarrowplatewidthorholeoffset/shortedgedistance(neitherofwhichwasaddressedinthefivemillionunequalcornercracksolutions.Therefore,additionalcorrectionfactors(ofperhapsquestionableaccuracyorgeneralityarestillrequiredforpracticaluse.Second,thehugenumbersofresultsmakethetaskofverificationdifficult,ifnotimpossible.Howdowereallyknowthatallofthosesolutionsareactuallycorrect?

Thenumericalmethoditselfmayclaimthatnumericalconvergenceisaguaranteeofsuccess,butacarefulinspectionoftheoriginalFawaz-Anderssondatabasebythecurrentauthorsfoundsomezerosorevennegative(!

valueswheretheyshouldnotoccur.Further

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2