玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx

上传人:b****7 文档编号:16100476 上传时间:2023-07-10 格式:DOCX 页数:28 大小:401.08KB
下载 相关 举报
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第1页
第1页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第2页
第2页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第3页
第3页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第4页
第4页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第5页
第5页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第6页
第6页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第7页
第7页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第8页
第8页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第9页
第9页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第10页
第10页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第11页
第11页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第12页
第12页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第13页
第13页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第14页
第14页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第15页
第15页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第16页
第16页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第17页
第17页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第18页
第18页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第19页
第19页 / 共28页
玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx

《玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx》由会员分享,可在线阅读,更多相关《玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx(28页珍藏版)》请在冰点文库上搜索。

玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精.docx

玻璃基底上纳米银粒子的生长及其表面增强拉曼散射活性精

第20卷第11期

V01.20NO.1l

中国有色金属学报

TheChineseJournalofNonferrous

2010年11月

Metals

NOV.2010

文章编号:

1004—0609(2010)11-2221-07

玻璃基底上纳米银粒子的原位生长及其

表面增强拉曼散射活性

易早1,一,李恺1,韩尚君1,牛高1,易有根2,陈善俊1,3,罗江山1,唐永建1,3

(1.中国工程物理研究院激光聚变研究中心,绵阳621900:

2.中南大学物理科学与技术学院,长沙410083;3.四川大学原子与分子物理研究所,成都610065)

摘要:

利用预处理一化学沉积法在玻璃基底表面原位生长形貌各异的纳米银粒子,获得高活性的表面增强拉曼散射(SERS)基底。

采用SEM、XRD和UV等测试手段对样品进行分析和表征,并考察纳米银粒子的形貌对其薄膜基底表面增强拉曼散射活性的影响。

结果表明:

随着反应液中硝酸银与乙二胺的摩尔比以及反应温度的改变,纳米银粒子的形貌发生变化。

当反应温度为30℃、硝酸银与乙二胺的摩尔比为1:

5时,制备出的由纳米银薄片组成的薄膜具有最强的紫外吸收光谱红移,可红移至800nm;并且以此条件得到的表面增强拉曼散射活性基底具有最强的表面增强拉曼散射信号,拉曼增强因子达到258.4。

关键词:

表面增强拉曼散射基底;化学沉积;银纳米粒子;拉曼增强因子中图分类号:

TGl46

文献标志码:

In-situgrowthofsilvernanoparticleonglasssubstratesand

itssurface—enhancedRamanscattering

YIZa01,2LI

Kail,RANShang-junl,NIUGa01,YIYou-gen2,CHENShan-junl”,LUOJiang.shahl,TANGYong-jianl,3

(1.ResearchCenterofLaserFusion,ChinaAcademyofEngineeringPhysics,Mianyang621900,China;

2.SchoolofPhysical

3.Institute

Science

andTechnology,CentralSouthUniversity,Changsha410083,China;

ofAtomicandMolecularPhysics,SichuanUniversity,Chengdu610065,China)

Abstract:

Anovelsolidsubstratewithhighsurface-enhancedRamanscattering(SERS)activitywasfabricatedthroughglasssubstratesbypretreatmentelectroless.111eeffectof

in-siregrowthofsilverparticleswithvariantmorphology

surface

on

morphology

ofthin

filmsofsilvernanoparticles

on

theSERS

actiV蚵ofthesubstrateWas

changes

studiedbywiththe

SEM,XRD

of

andUV—visspectroscopy.Theresultsshowthatthemorphologyofsilvernanoparticleschange

the

molarratioofAgN01flakeof

andethylenediamine

in

reactionsolutionandthereactiontemperature.Thefilmcontaining

at

llano

silverhasthestrongestUvabsorptionspectra

to

800

nrn

withred-shiftwhenthe

signal

reactiontemperatureiS30℃

and

themolarratioofAgN03ethylenediamine

is

1:

5.强estrongestSERS

ofSERS-activesuhstrateisobtained

underthesamecondition,andtheRaman

enhancementfactorreaches258.4.

nano

Keywords:

surface.enhancedRamanscattering;eleetrolessdeposition;silver

particle;Raman

enhancementfactor

表面增强拉曼光谱(SERS)是研究分子在金属表面吸附的有力工具,它能提供大量的振动光谱信息,可用来确定吸附分子的种类、吸附状态和取向等。

同时,巨大的增强因子使其具有亚单分子层的检测灵敏

度。

在一些纳米银粒子的表面上,某些分子的SERS信号灵敏度可与荧光光谱媲美,甚至超过荧光光谱。

通常情况下荧光谱峰的宽度比拉曼谱峰宽10-100倍,因而,其光谱选择性要大大优于荧光光谱。

这无疑为

基金项目:

国家自然科学基金资助项(10804101);国家重点基础研究发展计划资助项目(2007CB815102);等离子体物理国防科技重点实验室基金

资助项I;1(9140C68050208061

收稿日期:

2009.11—27;修订日期:

2010.03-22

通信作者:

唐永建,教授:

E-mail:

myyzl984@yahoo.∞

万方数据

中国有色金属学报

SERS在生物分子的结构和构象、分子界面行为和性质、分子与标记金属微粒表面的相互作用奠定了良好的基础111J。

拉曼信号的增大主要是由于入射激发光与粗糙金属表面电子相互作用,形成表面等离子激发,导致金属表面电磁场增强(物理增强);其次,是由于所谓的电荷转移增强(化学增强),即金属表面电子和吸附分子间电子相互转移。

其中,电场增强效应起决定性作用,因此,表面增强拉曼效应必须以表面粗糙的金属为基底。

从实际应用的角度出发,为了将SERS作为一种常规、在线的分析工具,一个理想的SERS基底应该具有增强能力巨大、稳定、易于制备以及SERS信号重现性好等优点,因此,关于SERS基底的制备研究一直是科学家们的一个重要的研究方向。

目前,活性金属膜层的制备方法有多种,包括旋涂法【4】、电化学法【51、真空蒸发沉积法[61、平版印刷法[7】、自组装纳米金属胶体[8】和原位化学还原法【9】等。

前几种方法依次需要旋涂机、电化学仪器、真空室和反应离子刻蚀配套等设备,而后2种方法的操作过程复杂且不易控制。

为了克服以上不足,本文作者借鉴YOSHIO等【lo】以及SABAHUDIN等[11l的方法,采用乙二胺为络合剂,并且借助其弱还原性在玻璃基底上制备出形貌各异的纳米银粒子。

实验

Ll裁篙(Ethylenediamine,en)、峨sn2++Ag+一smg

主要试剂:

乙二胺

、盐酸、

硝酸银、二水合氯化亚锡、锡粒,所有药品均为分析纯,水为二次去离子水,基底为普通玻璃载玻片(切成

4cmxl

cm的长方形待用)。

仪器:

XD-98型X射线衍射仪,UV-3802型紫外一可见分光光度计,LeicaCambridge¥440扫描电镜(SEM)。

1.2

SERS活性基底的制备

将载玻片依次用洗衣粉水、乙醇和丙酮超声清洗

30

rain,经纯水洗干净后,再经过N2吹干,置于由质

量分数为98%的浓硫酸和30%的双氧水以7:

3的体积比配制而成的Piranha洗液中,于85℃煮沸2h,取出,充分水洗后吹干。

将6.85

gSnCl2.2H20加入100

mL

mol/L的盐酸溶液中配制成溶液,并加入0.2

锡粒,防止Sn2+氧化成Sn4+。

溶液搅拌30rain后陈化

12

h,将玻璃基片浸没敏化液中静止2h。

室温下,取

万方数据

新制备的0.1g/L的AgN03溶液2mL加入到100mL

锥形瓶中,缓慢滴加10mLell水溶液,之后用去离子水将反应液稀释至100mL。

最后将敏化好的基片浸没

于反应液中,静止反应2h,反应结束后,取出基片用去离子水清洗干净,干燥后真空保存。

1.3

SERS活性测试

首先,将5umol/LR6G的甲醛溶液用微量移液枪

取1皿分别滴加在6种不同形貌的固体SERS基底

上,等自然干燥后进行SERS活性探测,分析不同形

貌纳米银粒子组成SERS基底活性的优劣,寻找最优

的制备条件。

SERS用的共聚焦拉曼光谱仪为英国Renishaw公司生产的Renishaw-1000型光谱仪,激发光源为空气制冷氩离子激发器(Spectra-PhysicsModel163-C4260),激发波长为514.5nm,最大输出功率为

20mW。

测量时激发功率为4.0mW,积分时间均为10

S,单次测量。

在每个基片上取5点进行测量,取

平均值。

2结果与讨论

2.1反应机理分析

图1所示为玻璃基底上原位生长纳米银颗粒的过程示意图。

玻璃基底表面一般带负电,通过静电吸附作用,Sn2+很容易吸附到基底表面。

基底表面吸附的Sn2+很容易发生如下的氧化还原反应:

图1玻璃基底上原位生长银纳米颗粒的过程示意图

Fig.1

Schematic

diagram

ofin-situ

growth

ofsilver

nanoparticle

on

glasssubstratebyelectrolessplatingmethod

这样,银沉积在玻璃基底表面上形成一层均匀、细小的银颗粒。

乙二胺在式(1)中作为一种络合剂,同时也作为一种较弱的还原剂,以小银颗粒为“成核点”,

将AgN03在小银颗粒上不断还原。

在反应过程中,

第20卷第11期易早,等:

玻璃基底上纳米银粒子的原位生长及其表面增强拉曼散射活性2223Ag+与ell的络合和Ag+与氨的络合相似。

当加入cn之

后,Ag+以[Ag(OH)2en]一的形式存在,反应如下:

Ag++2H20+en寻熹[Ag(OH)2en]一+2H+示。

从图2可以看出,采用化学镀的方式,通过改变实验条件,可以制备出形貌不同的纳米结构的Ag薄膜。

(2)表1样品的制各条件

Table1Preparationconditionofell与AgN03形成络合物可以调节氧化还原电位

差△∞,Ag+以[Ag(OHhen]一形式存在,可以很好地控

制反应速率,使得反应稳定进行,有利于粒子的均匀

生长。

samples

2.2产物的形貌分析

在不同实验条件下制备不同形貌的6个样品以探

明基底上不同形貌的纳米Ag颗粒对拉曼增强效应的

影响,具体制备条件如表l所列。

用SEM测得上述纳米Ag粒子薄膜形貌如图2所

图2不同制备条件下样品的SEM像

Fig.2SEMimagesofsamplespreparedunderdifferentpreparationconditions:

(a)Samplea;(b)Sampleb;(c)Samplec;(d)Sampled;(e)Samplee;(f)Sample

万方数据

中国有色金属学报2010年11月

随着反应条件的改变,纳米Ag薄膜呈现出不同的形貌:

球形Ag粒子,平均粒径约为100am,在基底上单层排列,排列非常紧密(见图2(b));纳米Ag颗粒为薄片状,薄片边长约为500nm,厚度为10nm,排列较紧密(见图2(c));纳米Ag颗粒为薄片状,但是存在大量团聚现象,许多薄片粒子粘在一起(见图2(d));纳米Ag颗粒为不规则粒子,有片状、球状,单层排列(见图2(e));纳米Ag颗粒为不规则的多面体晶型结构(见图2(f))。

图2(0与(c)对应的样品形貌有很大差异,这是由于温度对产物形貌的影响主要作用在还原速度和晶型重整两个方面。

当温度过高时,其反应进程会大大加快,使得还原得到的银原子来不及在特定晶面吸附生长就团聚到一起形成较大的、不规则的多面体

晶型的纳米颗粒。

2.3产物的结构分析

根据X射线衍射理论,对X射线衍射峰进行多重峰分离,并对分离出的衍射峰进行线性分析,把由仪器因素引起的几何宽化和由尺寸和微观应变等物理因素引起的物理宽化分开,最后扣除几何宽化,对衍射线性函数进行Warren-Averbach傅里叶变换,求得样品的晶粒尺寸。

图3所示为样品的x射线衍射谱。

在XRD谱中出现了4个衍射峰,与衍射卡片组(PDF一040836)的数据进行比较,衍射线的4个衍射峰均为Ag的特征峰,共有4个晶面,对应的晶面指数由里到外依次为(111)、(200)、(220)、(311),为面心立方结构。

由图3可见,5条谱线的峰位和峰形基本一致,根据上述理论以及已有的数据,计算出样品的平均晶粒尺寸分别为3.75nm(b),3.74rim(c),3.75rim(d),3.76

nm(e)和3.77rim(f),得到的晶粒尺寸基本一致。

该曲

线衍射峰相当尖锐,表明产品结晶性能良好[”】。

图3样品的XRD谱

Fig.3

XRDpatternsofsamples

万方数据

2.4产物的紫外一可见吸收光谱分析

金属纳米粒子在紫外可见区的吸附带或者吸附区,是由价带电子与电磁场的相互作用产生的连续振动,即表面等离子体共振(Surface

plasmons

resoiIRnce,

SPR)而产生的。

这是小粒子尺寸效应的表现,吸收峰的位置和形状与粒子大小、形状和团聚状态有关¨引。

图4所示为样品的紫外吸收光谱图。

金属纳米粒子的表面等离子体共振吸收由粒子表面导带电子受外光电场驱动发生集体振荡所致,吸收峰位受粒子形貌和尺度、周围介质的介电常数、粒子表面偶联分子的性质、粒子间的聚集程度等因素的影响。

5个样品均在

430--450

nln区间有一个缓和的肩峰,这是基底上不规

则状的银纳米粒子产生的SPR特征吸收峰。

各基底均在更长波长处出现一个强而宽的吸收峰,样品b和d的谱线由于该峰与球形纳米银粒子的SPR峰较接近,故区分不明显。

在样品d、e和c的谱线中由于出现片状银纳米结构,其紫外吸收峰在近红外区域产生强的吸收。

随着银纳米片的变薄,其红移程度加强(见样品e和c的谱线),机理类似于三角形银纳米片引起红移的增强f14】。

当样品主要为片状银纳米结构时,紫外吸收峰红移最为明显,可达800rim(见样品C的谱线)。

当纳米薄片部分出现团聚并且粘附在一起时,SPR峰出现蓝移。

具体SPR峰位移动情况可见图4中箭头方向。

这些均可从SEM像得到验证。

Wavelength/nm

图4样品的紫外光谱图

Fig.4

UV-Visabsorptionspectraofsamples

2.5

SERS活性

实验时,在样品C的表面和玻璃基底上分别滴一

滴(5止)浓度为5pmol/L的R6G甲醇溶液,溶剂蒸发

后,在2个基底表面形成了直径为20mm左右、大小基本一致的R6G薄膜。

假设在20mm直径范围内分

第20卷第11期易早,等:

玻璃基底上纳米银粒子的原位乍长及其表面增强拉曼散射活性2225

子是均匀分布的,通过计算,可以得到R6G分子在这

一区域内的密度为6.38x1012cm-2,因此,每个分子所

占的面积为877A2。

GUPTA和WEIMERtl5】用半经验

分子轨道模型(Semi.empiricalmolecularorbitalmodel)

对R6G分子的结构进行优化,得到每个R6G分子在表面上所能占有的最大面积为222A2。

所以,在这个实验中,R6G分子在2种基底表面的覆盖度约为25%,是亚单层膜。

然后,用同一台拉曼光谱仪分别测纳米粒子表面的R6G的SERRS谱和玻璃基底上R6G的荧光光谱(见图5)。

在图5(a)中,荧光信号在1361cm-1

处的强度为1

213

cps,而在经过基线校正除去荧光背

景的R6G的SERRS谱图中,相应位置的谱峰强度约

为200cps,即拉曼信号约为荧光信号强度的20%。

NIE和EMORY[16】对R6G分子在514.5lira激发波长下

的荧光截面进行了计算,得到的数值为2.5x10_16cm2,

而其拉曼信号的散射截面为荧光截面的20%即

5×10-1

7cm2,在没有增强的情况下,R6G的拉曼散射

截面为10-30cm2,所以,在514.5nm激发波长下纳米

粒子对R6G的增强能力为10”,除去共振的影响(大概在1041161),这种纳米粒子实际的增强能力约为109。

图5R6G分子在玻璃基底上的荧光光谱以及R6G分子在

样品e上的拉曼光谱

Fig.5

Fluorescence

specmtrn

ofR6Gon

glass

substrates(a)

RamanspectrumofR6G

On

samplec(b)

分别用上述样品作为SELLS的衬底材料,采用5pmol/L的罗丹明6G为探针分子,得到罗丹明6G的增强Raman散射信号,并将5Bmol/L的罗丹明6G直接滴加到普通玻璃上的Ramall信号作为对比,如图6所示。

从图6可以清晰地看出:

将被稀释的探针罗丹明6G滴在玻璃基片上时,其Raman散射信号强度很弱,几乎没有峰值;在基底上获得了高信噪比的R6G

的SERS光谱,与苯环相关的~系列C~---C双键伸缩

万方数据

振动特征谱【l¨(1310、l361、1506、1574、l649cln-1)

以及与苯环相关的面内、面外变形振动特征谱610、

773、l186cm-1均获得了明显增强。

上述结果证实这

些基底的SERS活性较高,需要指出的是并不是以上6种基底都具有这样优良的SERS活性,只有当基底表面的纳米银颗粒出现活性点位时才具有SER活性,并且活性点位的数量对荧光猝灭的能力和拉曼增强效果也不同,并呈现出一定的规律。

对不同基底上R6G进行SERS比较测定,每一基底各取5个不同位置进行SERS检测后取平均值,得到不同形貌纳米银粒子组装基底的SERS活性特点。

对照样品的SEM像有,当基片表面的球形纳米银颗粒分布相对稀疏时,基底表面粗糙度不够,以致SERS效果不理想,大部分位置的SERS活性较差,仅在少许“热点”位置才测得SERS,且荧光背景高、信噪比差,SERS活性点位分布表现出明显的不均匀性(见图6(a))。

当基片表面的球形颗粒排列紧密时,基底表面粗糙度随之变大,SERS活性增强(见图6(b))。

当基底表面纳米Ag颗粒为薄片状时(见图2(c)),表面各位置SERS活性较均一,荧光较好地被猝灭,获得了最佳的表面拉曼增强效果。

而当表面粒子依旧为薄片状,但是存在大量团聚现象时,SERS活性减弱,SERS仅在一些“热点”处测得(见曲线图6(d))。

这是因为在该区域,片状银颗粒的连续絮状分布将会致使该区域银颗粒分布过度致密,膜粗糙度

降低(见图2(d))。

当基片表面纳米Ag颗粒为不规则

粒子时,形貌同时存在片状和球状(见图2(e)),SERS活性介于球状与薄片状之间(见图6(e))。

当基片表面纳米Ag颗粒为不规则的多面体晶型结构,且其粒径较大时(见图2(f)),SERS活性减弱,如图6(0所示。

R6G分子在样品以及玻璃基底上的拉曼光谱

Raman

spectraof

R6G

On

samples

and

011

glass

c;(b)Samplee;(c)Sample

d;(d)Sample

b;(0Sample

a;(g)Glasssubstrate

and

图6

Fig.6

substrate:

(a)SampleE(e)Sample

中国有色金属学报

2010年11月

要确定一种基底的增强能力,就必须计算出吸附在粒子表面上的分子吸附信号的表面增强因子。

普遍的认识是物理增强和化学增强同时存在,只是对于不同分子,其在SERS中所占的比例不同。

不管是从物理增强还是从化学增强考虑,对SERS有贡献的主要是吸附在银粒子表面的单分子层。

因此,在实验中需要尽量保证吸附在基底表面的有机分子为单层膜的结构。

现在普遍接受的方法是采用吸附分子的SERS信号与其荧光信号或与其常规拉曼信号的比值作为增强因子大小的衡量依据。

这里采用的是前面一种方法,通过将R6G分子在活性基底上的拉曼散射截面与其在玻璃基底上测得的荧光散射截面进行比较即可得到

增强因子【18]。

SERS的增强因子(Enhancementfactor)定义为

铲klsu—rr×等=,I~sm-×孚

(3)

式中:

k为吸附在基底上探针分子的特征峰的积分面

积;如。

为溶液中探针分子特征峰的积分面积;S为样品上所有探针分子所占面积;&6G为单个探针吸附分子所占的表面积;M为探针分子总数量。

增强因子

越大,增强效应越强。

焦:

O'Raraan:

紧:

10-9

(4)

、’Iflu

O'flu

10—16

式中:

OrKaman和印。

分别为拉曼强度和荧光强度,根据图5及相关数据计算得其增强能力约为109。

依据公式(3)和(4)有下列式子:

G:

生×MSR60

x109

(5)

l‰

基于式(5),可以对样品的SERS增强因子进行计算,计算结果见表2。

从表2可以看出,样品c对应的增强因子最大,增强效应最好,是最理想的SERS活性基底材料。

表2样品的拉曼增强因子

Table2

Enhancementfactorofsamples

万方数据

3结论

1)以玻璃片为基底,采用预处理一化学镀法在其表面制备出形貌各异的纳米银粒子薄膜材料。

随着反应液中AgNO,与乙二胺的摩尔比以及温度的改变,银纳米粒子的形貌发生改变。

2)玻璃基底表面纳米银粒子薄膜由形貌各异、纯度很高和面心立方结构的纳米银粒子堆积而成。

当反应温度为30℃、AgN03与ell的摩尔比为l:

5时,制备出的由纳米银薄片组成的薄膜具有最强的紫外吸收光谱红移,可红移至800

nm。

3)制备出的纳米银粒子薄膜具有很强的SERS活性,可以充当高SERS活性的固态基底材料。

当纳米

银粒子形貌不同时,SERS效应不同,且当活性基底由纳米银薄片组成时,增强因子最大,增强效应最好。

REFERENCES

【1]

MORTONS

M,

JENSENL.

Understanding

the

molecule-surfacechemicalcouplinginSERS[J].JAmChem

Soc,2009,131:

4090--4098.

【2】TIANZhong—qun,REN

Bin,、砌De-yin.Surface-enhanced

Ramanscattering:

Fromnobleto

transitionmetalsandfrom

roughsurfaces

to

orderednanostruetures[J].JPhyChemB,2002,

37(1061:

9463—9483.

[3】

CANOTD,AROCA

KSAJADJ气RODRIGUEZ—MENDEZ

L.Langmuir-blodgettmixed

films

of

titanyl(Ⅵ1

pthaloeyanine

andarachidicacid:

Molecularorientationandfilm

strueturep].Langmuir,2003,19:

3747-3751.t4】

MICHAELS

M,NIRMALM,BRUS

LE.Surfaceenhanced

Ramanspectroscopyofindividualrhodamine6Gmoleculeson

la

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2