研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx

上传人:b****6 文档编号:16203877 上传时间:2023-07-11 格式:DOCX 页数:40 大小:107.22KB
下载 相关 举报
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第1页
第1页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第2页
第2页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第3页
第3页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第4页
第4页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第5页
第5页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第6页
第6页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第7页
第7页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第8页
第8页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第9页
第9页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第10页
第10页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第11页
第11页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第12页
第12页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第13页
第13页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第14页
第14页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第15页
第15页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第16页
第16页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第17页
第17页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第18页
第18页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第19页
第19页 / 共40页
研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx_第20页
第20页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx

《研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx》由会员分享,可在线阅读,更多相关《研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx(40页珍藏版)》请在冰点文库上搜索。

研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究.docx

研究生开题报告畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究

分类号:

学号:

 

四川农业大学硕士学位毕业论文

开题报告

 

畜禽废水污染胁迫下芦苇和大薸在分子水平上的变异研究

 

硕士研究生:

指导老师:

专业:

环境工程

研究方向:

 

农业大学

二年三月

 

一、选题背景…………………………………………………………1

1.1、环境生物技术的诞生……………………………………………1

1.2、外来动植物引进后对环境的影响………………………………1

1.3、对植物受污染胁迫研究的深入…………………………………1

1.4、川农污水处理厂的生物处理方法………………………………2

二、文献综述…………………………………………………………2

2.1分子标记技术的产生和种类………………………………………2

2.2常用分子标记技术简介……………………………………………5

2.3RAPD分子标记技术及其应用领域………………………………8

2.4植物受环境污染胁迫国内外研究进展…………………………11

2.5大薸、芦苇污染胁迫研究进展……………………………………16

三、目的意义…………………………………………………………18

四、研究内容…………………………………………………………18

五、技术路线…………………………………………………………19

六、材料方法…………………………………………………………19

七、预期结果…………………………………………………………22

八、进度安排…………………………………………………………22

九、经费预算…………………………………………………………22

一十、参考文献…………………………………………………………23

一、选题背景

背景1:

环境生物技术的诞生

随着人类的进步、社会的发展和科学技术水平的提高,环境污染问题也随之凸显出来,并且日趋严重,具有复杂性、多样性和综合性的特点。

人们对环境保护、污染治理提出了新的要求,不但要集中治理工厂、生活区产生的污染,还要治理由于生产和事故等原因造成的地下水、海洋和土壤的污染,而高效、快捷和经济地消除污染的方法就是利用生物处理技术或生物修复技术。

生物处理技术如果从19世纪末英国使用生物滤池处理生活污水算起,已经有一个多世纪了。

在这一个多世纪中,生物处理技术有了很大的发展,从生物滤池法到活性污泥法、厌氧消化法、流化床法、各种方法层出不穷,处理的废水也从生活污水扩大到工业有害有毒废水甚至重金属废水,还可用于处理固体有机废物和废气等。

生物修复技术起源于有机污染物的治理,最初的生物修复是从微生物的利用开始。

人类利用微生物制作发酵食品已有几千年的历史,利用好氧或厌氧微生物处理污水已有100多年的历史,但是利用生物修复技术处理现场有机物才有30年的历史。

首次记录实际使用生物修复是在1972年,于美国宾夕法尼亚州的Ambler清除管线泄漏的汽油。

最初,生物修复的应用范围仅限于试验阶段,直到1989年美国阿拉斯加海域受到大面积石油污染以后,才首次大规模应用生物修复技术。

生物处理技术和生物修复技术在环境治理和环境保护中的广泛应用,衍生出一门新的学科和新的技术,即环境生物技术[1~10]。

背景2:

外来动植物引进后对环境的影响

人们为了达到对污染物降解处理和生态恢复的目的,大量引进和培养具有较强去污能力的动物、植物和微生物,甚至不惜花巨资研究具有多种污染物高效去除能力的超级生物。

生物技术在环境治理和环境保护上的应用虽然具有成本低、效率高的优点,但是我们在环境中应用生物技术(生物处理技术和生物修复技术)的时候,还应该注意防止给环境带来新的不必要的生物污染。

现在流行的利用构建的超级基因工程菌的方法来处理受污染土壤和污染水体,由于构建的超级细菌具有较强对多种污染物的降解和去除能力,在使用时应该特别注意防止其作为外源物种进入环境,由于构建的基因工程菌比环境中原有的土著菌具有更强的适应性和生活力,如果其作为外来物种侵入环境,无疑将凭借其快速的物质利用性和广谱的底物利用范围成为优势种群,将会使环境中的土著菌消失,破坏当地的生态环境[2]。

再如,水葫芦和大薸对有机废水都有较强的去除能力,在同类浮水植物中具有明显的优势,如果合理利用于环境污染治理,及时清理受污染水体中大量繁殖的多余个体,将造福于人类,但是,如果利用不当,仍其自由疯长,将会使水质进一步恶化,如同超级细菌一样遏制土著水生动植物的生长。

因此,我们在进行环境生物治理时,应当合理利用,特别注意防止外来生物的引进对环境带来破坏。

背景3:

对植物受污染胁迫研究的深入

随着人口增长,人们在努力发展经济,提高生产力的同时,环境污染问题日益突出,而环境污染问题反过来又制约着经济的发展。

而最佳的环境治理方法就是利用植物来进行,如何培育耐高浓度废水、废气以及土壤污染物并且具有较高污染物去除率的植物是人们关注的一个话题。

大多数农作物在受环境污染后产量明显降低,人们对培育耐污染农作物提高农作物产量也是人们特别关注的一个话题。

当前,全球性的环境污染日益加剧,在一定程度上改变了自然地理环境,使植物种群长期受到不同浓度的环境污染胁迫,植物受污染胁迫最显著效应就是消除敏感种或个体,改变生物群落物种构成,对自然界的物种进行重新洗牌。

环境污染的区域性是大量污染敏感种灭绝的主要原因,是物种多样性和遗传多样性丧失的重要原因之一;然而,有些植物对污染胁迫环境具有相当大的适应潜力,这种潜力表现在外部形态上有的明显,有的却不够明显。

例如,有些植物在受污染胁迫环境下能正常生长,甚至表现出比未受污染时更强的生活力。

为此,人们花大量的精力和物力进行植物抗污染胁迫机理的研究,而研究得较为深入的是从植物的生理生化指标来进行,从分子水平上进行的还比较少,可以预见,今后人们的工作重点将从分子水平上来进一步揭示植物抗性机理[11~22]。

背景4:

川农污水处理厂的生物处理方法

四川农业大学污水处理厂,位于四川农业大学教学科研实习园,主要处理四川农业大学畜禽养殖场中每天大量排放的畜禽废水,其人工湿地中栽种有大量对有机废水去除效率较佳的芦苇,污水处理的最后一个环节是依靠生长在生物氧化塘中的大薸来完成的,以进一步去除经上一个畜禽废水生物处理环节人工湿地中排放出来的废水的色度和有机氮、磷。

由于合理利用、严格管理、及时收割人工湿地中的植物和清理生物氧化塘中的大薸,因此,他们对畜禽废水都有较佳的去除能力。

经生物氧化塘最终处理过的畜禽废水完全能够达到国家《污水综合排放标准》(GB8978-1996)中第二类污染物最高允许排放浓度一级标准。

处理后的废水直接排入濆江河支流,经长期监测下游水质状况,并没有富营养化现象发生。

基于人们对废水生物处理研究的关心、对外来动植物引进后对环境的影响的关注、对植物污染环境胁迫研究的深入以及研究材料取用方便等原因,因此,本文主要选用了人工湿地植物芦苇和大薸作为我的研究材料来进行研究。

二、文献综述

2.1分子标记技术的产生和种类

为了对生物体基因组进行系统性研究,在遗传学上常构建遗传图谱,而遗传图谱的构建经历了不同的发展阶段,它随着标记方法的改进而逐渐发展改进,从低密度的基于形态性状遗传连锁图谱发展至基于染色体的细胞学标记以及以同功酶,等位酶为基础的生物化学标记(也称作蛋白质标记),以至于当今基于DNA分子标记的高密度遗传连锁图谱的建立[23]。

DNA分子标记(DNAmolecularmarkers)或称遗传标记(geneticmarkers)本质上是指能反映生物个体或种群间基因组中某种差异特征的DNA片段。

1980年Bostein等提出分子标记技术限制性片段长度多态性RFLP(Restrictionfragmentlengthpolymorphism,RFLP),为遗传图谱的构建战略和技术带来了革命性的变革。

此后,随着PCR技术于1985年的问世和迅速崛起,PCR技术与电泳技术的结合,在短短的二十多年里,特别是近十年中,DNA分子标记技术的研究变得空前活跃,相继有数十种名称各异的基于分子杂交技术或PCR扩增技术而产生的分子标记技术问世,这一系列分子标记技术的问世将进一步推动高密度遗传图谱的发展和扩大其应用领域。

推动DNA分子标记技术研究迅速发展的动力,一方面是原有技术存在的缺点或应用上的限制,另一方面就是DNA分子标记技术的广泛应用及其取得的长足进步。

DNA分子标记技术已广泛应用于生物基因组研究,生物的遗传育种、起源进化、分类、医学、环境诊断及法医破案等诸多方面,是现代分子遗传学和分子生物学研究与应用的主流之一。

DNA分子标记是DNA水平上遗传多态性的直接反映。

DNA水平的遗传多态性表现为核苷酸序列的任何差异。

因此,DNA标记在数量上几乎是无限的。

DNA分子标记无表型效应,可对不同发育阶段的个体、不同的组织、器官甚至细胞作检测,既不受环境的影响,也不受基因表达与否的限制,使对植株基因型的选择成为可能;基因组变异十分丰富,分子标记的数量远远超出表型性状标记的局限;大多数分子标记是共显性的,对隐性性状的选择成为可能。

理想的DNA标记应具备以下特点:

①遗传多态性高;②共显性遗传,信息完整;③在基因组中大量存在且分布均匀;④选择中性;⑤稳定性、重现性好;⑥信息量大,分析效率高;⑦检测手段简单快捷,易于实现自动化;⑧开发成本和使用成本低。

虽然已发展出十几种各具特色DNA分子标记技术,并为不同的研究目标提供了丰富的技术手段,但还没有一种DNA标记能完全具备上述理想特性[24]。

虽然可利用形态性状作为一种遗传标记,但必须看到,动植物的形态及表型是遗传性和环境相互作用的综合结果,表型变异并不能完全或真实地反映遗传变异。

同一种基因型在不同的环境条件下可发育出不同的形态或生理特征,而相同的形态又可能涉及不同的基因型,因此形态性状作为遗传标记有其局限性。

此外,形态标记数量有限,要找到与目标形状相关的形态标记在操作上是较困难的。

细胞学标记反映的是染色体结构上和数量上的遗传多态性,但对那些染色体数目相等、形态相似的物种或类群,或同一居群的不同个体来说,单纯用染色体标记难以达到目的。

蛋白质标记是一种生化标记,通常是采用酶的电泳来达到,其中包括以一个以上基因位点编码的酶有不同分子形式的同功酶,以及由同一基因位点的不同等位基因编码的不同分子形式的等位酶。

同功酶(或等位酶)标记同样具有数量有限的局限性,且是基因表达的产物,其状况常受发育阶段和环境条件的影响,因而其应用也受到较大的局限性。

而DNA分子标记的问世彻底解决了遗传图谱构建上的局限性。

与形态学标记、细胞学标记、以及同功酶标记相比,其优点是明显的。

前三种标记都是以基因表达的结果(表型)为基础,是对基因的间接反映,而DNA分子标记是在DNA水平上对遗传变异的直接反映,其研究结果更准确,更具有代表性,它以其独特的优势迅速成为当前应用最为广泛的一种遗传标记技术。

DNA分子标记技术根据其操作原理可以分为两大类:

一类是以Southern杂交为基础的分子标记,例如RFLP、VNTR。

另一类是以PCR为基础的分子标记,如RAPD、AFLP、STM等。

依据对DNA多态性的检测手段,DNA标记可分为四大类:

第一类为基于DNA-DNA杂交的DNA标记。

该标记技术是利用限制性内切酶酶解及凝胶电泳分离不同生物体的DNA分子,然后用经标记的特异DNA探针与之进行杂交,通过放射自显影或非同位素显色技术来揭示DNA的多态性。

其中最具代表性的是发现最早和应用广泛的RFLP标记。

第二类为基于PCR的DNA标记。

PCR技术问世不久,便以其简便、快速和高效等特点迅速成为分子生物学研究的有力工具,尤其是在DNA标记技术的发展上更是起到了巨大的作用。

根据所用引物的特点,这类DNA标记可以分为随机引物PCR标记和特异引物PCR标记。

随机引物PCR标记包括RAPD标记、ISSR标记等,其中RAPD标记使用较为广泛。

随机引物PCR所扩增的DNA区段是事先未知的,具有随机性和任意性,因此随机引物PCR标记技术可用于对任何未知基因组的研究。

特异引物PCR标记包括SSR标记、STS标记等,其中SSR标记已广泛地应用于遗传图谱构建、基因定位等领域。

特异引物PCR所扩增的DNA区段是事先已知的,明确地,具有特异性。

因此特异引物PCR标记技术依赖于对各个物种基因组信息的了解。

第三类为基于PCR与限制性酶切技术结合的DNA标记。

这类DNA标记可分为两种类型,一种是通过对限制性酶切片断的选择性扩增来显示限制性片段长度的多态性,如AFLP标记。

另一种是通过对PCR扩增片段的限制性酶切来揭示被扩增区段的多态性,如CAPS标记。

第四类为基于单核苷酸多态性的DNA标记。

如SNP标记。

它是由DNA序列中因单个碱基的变异而引起的遗传多态性。

目前SNP标记一般通过DNA芯片技术进行分析。

以上四大类DNA标记,都是基于基因组DNA水平上的多态性和相应得检测技术发展而来的,这些标记技术都各有特点。

任何DNA变异能否成为遗传标记都依赖于DNA多态性检测技术的发展,DNA的变异是客观的,而技术的进步则是人为的。

随着现代分子生物学技术的迅速发展,随时可能诞生新的标记技术。

DNA标记的拓展和广泛应用,最终必然会促进作物遗传和育种研究的深入发展[23~24]。

2.2常用分子标记技术简介

生命的遗传信息存储于DNA序列之中,高等生物每一个细胞的全部DNA构成了该生物体的基因组。

基因组DNA序列的变异是物种遗传多样性的基础。

利用现代分子生物学技术揭示DNA序列的变异(遗传多态性),就可以建立DNA水平上的遗传标记。

检测DNA水平上的遗传变异最精确的方法是直接测定DNA序列,通过对测定的DNA序列进行分析比较,即可揭示生物体间在单个核苷酸水平上的遗传多态性。

目前分子标记技术层出不穷,这里仅就目前使用频率较高的几种标记技术作一个简单的介绍。

2.2.1RFLP标记

RFLP即限制性片段长度多态性,是一项利用放射性同位素或非放射性物质标记探针,与转移于支持膜上的经特定限制性内切酶消化的基因组总DNA杂交,通过显示限制性酶切片段的长度多态性来检测生物个体之间差异的分子标记技术。

RFLP标记具有共显性特点,可以区别基因型纯合与杂合,能够提供单个位点上较完整的资料。

它主要应用于各种作物遗传连锁图的绘制和目标基因的标记。

但由于RFLP标记对DNA需要量较大(5~10μg),所需仪器设备较多,成本高,技术较为复杂,所以应用受到了一定程度的限制。

2.2.2RAPD标记

RAPD即随机扩增多态性DNA,是以一个随机的寡核苷酸序列(通常为10个碱基)作引物,通过PCR扩增反应,产生不连续的DNA产物,用以检测DNA序列的多态性。

RAPD以PCR为基础,扩增原理与PCR基本相同,不同之处在于用一个随机的核苷酸序列代替事先设计好的引物,在较低的退火温度下进行随机扩增。

大量研究证明RAPD是一种有效的分子标记方法,被广泛应用于各个研究领域。

但RAPD标记是显性标记,不能区分杂合型和纯合型。

2.2.3DAF标记

DAF标记原理上与RAPD标记相似,但它所使用的引物比RAPD标记的更短,一般为5~8个核苷酸,因而与模板DNA随机结合的位点更多,检测多态性的能力更强。

在多态性程度比较低的作物如小麦上,DAF技术是一种有用的寻找DNA分子标记的手段。

但由于DAF使用了更短的引物,因而其PCR稳定性比RAPD更低。

2.2.4AP-PCR标记

AP-PCR标记原理上也与RAPD相似,但所使用的引物较长,通常为18~24个碱基。

因此,其PCR反应条件与常规一样,稳定性要比RAPD好,但揭示多态性的能力要比RAPD低。

2.2.5ISSR标记

简单序列重复间区(ISSR)DNA标记技术是由Zietkiewiczetal.(1994)提出的,该技术检测的是两个SSR之间的一段短DNA序列上的多态性。

利用真核生物基因组中广泛存在的SSR序列,设计出各种能与SSR序列结合的PCR引物,对两个相距较近、方向相反的SSR序列之间的DNA区段进行扩增。

一般在引物的5′或3′端接上2~4个嘌呤或嘧啶碱基,以对具有相同重复形式的许多SSR座位进行筛选,使得最终扩增出的ISSR片段不至太多。

ISSR技术所用的PCR引物长度在20个核苷酸左右,因此可以采用与常规PCR相同的反应条件,稳定性比RAPD好。

ISSR标记呈孟德尔式遗传,具显性或共显性特点。

在动植物基因组中存在大量的双核苷酸重复序列,因此,大多数ISSR标记所用PCR引物是基于双核苷酸重复序列的。

近年来,ISSR标记技术已应用于植物遗传分析的各个方面,如品种鉴定、遗传关系及遗传多样性分析、基因定位、植物基因组作图研究等。

Kojimaetal.(1998)的研究表明,(AC)n双核苷酸重复序列非常适合小麦的染色体作图,并成功地定位了一系列ISSR标记。

2.2.6SCAR标记

SCAR标记通常是由RAPD标记转化而来的。

为了提高所找到的某一RAPD标记在应用上的稳定性,可将该RAPD标记片段从凝胶上回收并进行克隆和测序,根据其碱基序列设计一对特异引物,(18~24碱基左右)。

也可只对该RAPD标记片段的末端进行测序,根据其末端序列,在原来RAPD所用的10碱基引物上增加相邻的14个左右碱基,成为与原来RAPD片段末端互补的特异引物。

以此特异引物对基因组DNA再进行PCR扩增,便可扩增出与克隆片段同样大小的特异带。

这种经过转化的特异DNA分子标记称为SCAR标记。

SCAR标记一般表现为扩增片段的有无,为一种显性标记;但有时也表现为长度的多态性,为共显性的标记。

若检测DNA间的差异表现为扩增片段的有无,可直接在PCR反应管中加入溴化乙锭,通过在紫外灯下观察有无荧光来判断有无扩增产物,从而检测DNA间的差异,这样可省去电泳的步骤,使检测变得方便、快捷、可靠,可以快速检测大量个体。

相对于RAPD标记,SCAR标记由于所用引物较长及引物序列与模板DNA完全互补,因此,可在严谨条件下进行扩增,结果稳定性好、可重复性强。

随着研究工作的发展,会有越来越多的重要作物农艺性状的SCAR标记被开发出来,它们将在分子标记辅助育种方面发挥巨大作用。

2.2.7STS标记

STS即序列标定位点,由Olson提出,最早发现于人类基因组中。

STS标记是根据单拷贝的DNA片段两端的序列,设计一对特异引物,扩增基因组DNA而产生的一段长度为几百bp的特异序列。

它们的序列是已知的,在染色体上的位置是固定不变的。

STS标记采用常规PCR所用的引物长度,PCR分析结果稳定可靠,因此可以用PCR方法,在基因组其它序列存在的情况下,用特异引物将其专一性扩增,且不同STS间不会出现重叠现象。

RFLP标记经两端测序,可转化为STS标记。

STS在基因组中往往只出现一次,从而能够界定基因组的特异位点(Olsonetal.1989)。

用STS进行物理作图,可通过PCR或杂交途径来完成。

STS标记可作为比较遗传图谱和物理图谱的共同标记,这在基因组作图上具有非常重要的作用,因为STS有以上优点,科学家们已开始在研究中应用STS方法。

2.2.8SSR标记

SSR也叫微卫星DNA,是指DNA分子中2~4个核苷酸的串联阵式,其分布遍及人类和动植物的所有染色体及染色体各个片段。

不同品种间其重复单位数有极高的变异,一般为10~50次,由于每个SSR座位两侧一般是相对保守的单拷贝序列,因此可根据两侧序列设计一对特异引物来扩增SSR序列。

经聚丙烯酰胺凝胶电泳,比较扩增带的迁移距离,就可知不同个体在某个SSR座位上的多态性。

SSR标记的多态性主要依赖于基本单元重复次数的变异,而这种变异在生物群体中是大量存在的。

因此,SSR标记的最大优点是具有大量的等位差异,多态性十分丰富。

但是,SSR标记必须依赖于测序设计引物,开发成本高。

不过,目前许多物种已有现成的、商品化的SSR引物,对一般实验室而言,只需利用现成的SSR引物进行PCR扩增,即可分析DNA的多态性。

因此,一旦开发出某种生命全套的SSR引物,就获得了最富遗传变异信息的DNA标记。

该标记克服了RAPD缺点,具有较高的稳定性,是进行人类及动植物品种指纹分析,研究目的基因连锁关系和构建遗传图谱的理想标记。

但要获得SSR引物需要进行大量克隆、测序和杂交验证工作。

SSR标记由于具有操作简便和稳定可靠等优点,似有逐渐取代RFLP标记的趋势。

2.2.9AFLP标记

AFLP(amplifiedfragmentlengthpolymorphism)是1992年由Zabeau和Vos结合RFLP和PCR的优点发明的一项DNA指纹技术。

这种方法避免了繁琐的DNA酶切、转移、杂交、放射自显影等步骤,只需要很少的DNA模板,在无需知道有关DNA序列的情况下就可以进行PCR扩增,检测DNA多态性。

AFLP揭示的DNA多态性是酶切位点和其后的选择性碱基的变异。

AFLP扩增片段的谱带数取决于采用的内切酶及引物3′端选择性碱基的种类、数目和所研究基因组的复杂性。

由于AFLP是限制性酶切与PCR结合的一种技术,因此具有RFLP技术的可靠性和PCR技术的高效性,可以在一个反应内检测大量限制性片段,一次可获得50~100条谱带的信息。

因此,为不同来源和不同复杂程度基因组的分析提供了一个有力的工具。

近年来,AFLP已大量应用于种质资源研究,遗传图谱构建及基因定位(Doninietal.1997;Powelletal.1996;Keimetal.1997)。

对简单基因组的AFLP分析,采用普通的琼脂糖凝胶电泳,即可得到清晰的谱带。

一般的AFLP分析,采用4%~6%的变性聚丙烯酰胺凝胶电泳分离扩增的产物。

凝胶经10%乙酸固定、烘干、放射自显影或荧光摄影最终得到AFLP指纹图谱,进行多态性分析。

由于AFLP扩增出的DNA量较多,用普通的银染显色方法也可达到较为理想的效果[23~37]。

随着检测技术的不断改进,相信会有越来越多的分析效率更快、精确度更高、稳定性更强的DNA分子标记技术问世。

现就一些主要的DNA标记技术的特点如表1所示。

表1主要类型的DNA分子标记的技术特点比较

RFLP

VNTR

RAPD

ISSR

SSR

AFLP

基因组分布

低拷贝编码序列

整个基因组

整个基因组

整个基因组

整个基因组

整个基因组

遗传特点

共显性

共显性

多数显性

显性/共显性

共显性

显性/共显性

多态性

中等

较高

较高

较高

较高

检测基因座位数

1~3

10~100

1~10

1~10

多数为1

20~200

探针/引物类型

gDNA或cDNA

DNA

9~10bp

16~18bp

14~16bp

16~20bp

特异性低拷贝探针

短片段

随机引物

特异引物

特异引物

特异引物

DNA质量要求

中等

DNA用量

2~10μg

5~10μg

10~25ng

25~50ng

25~50ng

2~5μg

技术难度

中等

中等

同位素使用情况

通常用

通常用

不用

不用

可不用

通常用

可靠性

低/中等

耗时

成本

较低

较低

中等

较高

2.3RAPD分子标记技术及其应用领域

RAPD(randomamplifiedpolymorphicDNA)技术是1990年由Williams和Welsh两个研究小组同时发展起来的一项DNA多态检测技术。

RAPD是一种以10bp左右的短寡核苷酸为引物

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2