MetalAlloy金属合金中国材料研究学会.docx

上传人:b****7 文档编号:16223743 上传时间:2023-07-11 格式:DOCX 页数:61 大小:363.99KB
下载 相关 举报
MetalAlloy金属合金中国材料研究学会.docx_第1页
第1页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第2页
第2页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第3页
第3页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第4页
第4页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第5页
第5页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第6页
第6页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第7页
第7页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第8页
第8页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第9页
第9页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第10页
第10页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第11页
第11页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第12页
第12页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第13页
第13页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第14页
第14页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第15页
第15页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第16页
第16页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第17页
第17页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第18页
第18页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第19页
第19页 / 共61页
MetalAlloy金属合金中国材料研究学会.docx_第20页
第20页 / 共61页
亲,该文档总共61页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

MetalAlloy金属合金中国材料研究学会.docx

《MetalAlloy金属合金中国材料研究学会.docx》由会员分享,可在线阅读,更多相关《MetalAlloy金属合金中国材料研究学会.docx(61页珍藏版)》请在冰点文库上搜索。

MetalAlloy金属合金中国材料研究学会.docx

MetalAlloy金属合金中国材料研究学会

 

Vol.88,2015

 

*E-Material

*MetalAlloy

*Organic&Polymer

*CompositeMaterials

*PracticalApplication

*TechNews&NewTech

 

MCanxixunInformationandNewsService

 

MCanxixunInformationandNewsService

Contents

TechNews&NewTech(技术前沿)3

Newprocessforms3-Dshapesfromflatsheetsofgraphene3

新工艺将扁平的石墨烯薄片变成三维形状4

Theoryturnstorealityfornonlinearopticalmetamaterials5

非线性光学超材料理论变为现实6

Newformulatospeeddevelopmentofmodernmaterials7

新方法加速现代材料发展8

MetalAlloy(金属合金)10

Fundamentalobservationofspin-controlledelectricalconductioninmetals10

金属的自旋控制导电性的基本观察11

Simplifyingtherecyclingofrare-earthmagnets12

简化稀土磁体回收13

Pointingthewaytocrack-resistantmetals14

研究抗裂金属的方法15

CompositeMaterials(复合材料)16

CompositeMouldingTimesReducedbyAdvancedManufacturingBreakthrough16

先进制造业突破缩短复合材料成型时间17

BGFIndustriesReleasesInnovativeThermoplasticCompositeMaterial17

BGFIndustries公司发布创新型热塑性复合材料18

PracticalApplication(实际应用)18

NanowirescouldbetheLEDsofthefuture18

纳米线有望打造未来LED19

Makingclothesoutofgelatincouldreduceagriculturalwaste20

利用明胶制作服装,减少农业废弃物20

Mantisshrimpinspiresnewbodyarmor21

螳螂虾激发新型防弹衣的研发21

Inkjetinksmadeofsilkcouldyieldsmartbandages22

丝绸制作的喷墨油墨可生产智能绷带23

Imecclaimsmore‘importantbreakthroughs’incommercialisationofperovskitethin-film23

Imec称钙钛矿薄膜商业化的更多“重要突破”24

Organic&Polymer(有机高分子材料)25

Improvinginsulationmaterials,downtowettingcrossedfibres25

浸润交叉纤维,提高隔热材料性能25

Chemistscharacterize3-Dmacroporoushydrogels26

化学家表征3-D大孔水凝胶的特性27

Physicistsshatterstubbornmysteryofhowglassforms28

物理学家揭开玻璃形成之谜团28

E-Material(电子材料)29

Makingabettersemiconductor29

制造更好的半导体30

Newconductiveinkforelectronicapparel31

用于电子服装的新型导电油墨32

Discoverypaveswayfornewsuperconductingelectronics33

新型超导电子产品新发现35

Asimpleyetcleverwaytoboostchipspeeds36

提高芯片速度的一种简单而聪明的方法37

TechNews&NewTech(技术前沿)

Newprocessforms3-Dshapesfromflatsheetsofgraphene

Thisstudydemonstratesgrapheneintegrationtoavarietyofdifferentmicrostructuredgeometries,includingpyramids,pillars,domes,andinvertedpyramids.

ResearchersfromtheUniv.ofIllinoisatUrbana-Champaignhavedevelopedanewapproachforforming3-Dshapesfromflat,2-Dsheetsofgraphene,pavingthewayforfutureintegratedsystemsofgraphene-MEMShybriddevicesandflexibleelectronics.

“Tothebestofourknowledge,thisstudyisthefirsttodemonstrategrapheneintegrationtoavarietyofdifferentmicrostructuredgeometries,includingpyramids,pillars,domes,invertedpyramids,andthe3-Dintegrationofgoldnanoparticles(AuNPs)/graphenehybridstructures,”explainedSungWooNam,anassistantprofessorofmechanicalscienceandengineeringatIllinois.“Theflexibilityand3-Dnatureofourstructureswillenableintimatebiosensingdeviceswhichcanbeconformedtotheshapeandcharacteristicsofhumanskinandotherbiologicalsystems.The3-Dprotrudingmicro-structurescanalsoachieveenhancedsensitivitybymaximizingtheeffectivecontactareabetweenthesensorsandnon-flatsurfaces.

“Wealsoexpectthatournew3-Dintegrationapproachwillfacilitateadvancedclassesofhybriddevicesbetweenmicroelectromechanicalsystems(MEMS)and2-Dmaterialsforsensingandactuation.”

Graphene,a2-Dhoneycomblatticeofsp2-bondedcarbonatoms,hasbeenwidelystudiedduetoitshighcarriermobility,chemicalinertness,andbiocompatibility.Todate,variousreportedmethodsofgraphenetransferhavebeenmostlylimitedtoplanarorcurvilinearsurfacesduetothechallengesassociatedwithfracturesfromlocalstressduringtransferonto3-Dmicrostructuredsurfaces.

“Ourmethodutilizeswet-transferandadaptivesubstrate-engineering,providingseveralkeyadvantagesoverotherfabrication/integrationmethodsof3-Dgraphene,”statedJonghyunChoi,agraduatestudentinNam’sresearchgroupandfirstauthorofthearticleappearinginNanoLetters.“Ourresultsdemonstrateasimple,versatile,andscalablemethodtointegrategraphenewith3-Dgeometrieswithvariousmorphologiesanddimensions.Notonlyarethese3-Dfeatureslargerthanthosereportedinpreviousworks,butwealsodemonstratetheuniformityanddamage-freenatureofintegratedgraphenearoundthe3-Dfeatures.”

Theresearchers’robustapproachtointegrategrapheneonto3-Dmicrostructuredsurfacesmaintainsthestructuralintegrityofgraphene,wheretheout-of-planedimensionsofthe3-Dfeaturesvaryfrom3.5to50μm.Theprocessincorporatesthreesequentialsteps:

1.)substrateswellingusingasolventthat2.)shrinksduringtheevaporationprocess,allowinggrapheneto3.)adapt,orconformtotheshapeofapreparedsubstrate,toachievedamage-free,largeareaintegrationofgrapheneon3-Dmicrostructures.

“Ourswelling,shrinking,andadaptationstepsareoptimizedtominimizethedegreeofgraphenesuspensionaroundthe3Dmicrostructuresandfacilitatesuccessful3-Dintegration,”Namadded.“Wecontroltheamountofsubstrateswellingbyadjustingthetimeofimmersioninorganicsolventandthemixingratiosofmonomerandcuringagentofthepolydimethylsiloxane(PDMS)substrate.”

Detailedscanningelectronmicroscopy,atomicforcemicroscopy,Ramanspectroscopy,andelectricalresistancemeasurementstudiesshowthattheamountofsubstrateswelling,aswellastheflexuralrigiditiesofthetransferfilm,affecttheintegrationyieldandqualityoftheintegratedgraphene.Todemonstratetheversatilityoftheirapproach,theresearchersappliedtheprocesstoavarietyof3-Dmicrostructuredgeometries,aswellasintegratinghybridstructuresofgraphenedecoratedwithgoldnanoparticlesonto3-Dmicrostructuresubstrates,demonstratingthecompatibilityoftheintegrationmethodwithotherhybridnanomaterials.

Source:

Univ.ofIllinois,Urbana-Champaign

新工艺将扁平的石墨烯薄片变成三维形状

该研究证明石墨烯集成了各种不同微观结构的几何体,包括椎体、柱体、拱形和倒金字塔形。

来自美国伊利诺伊大学香槟分校的研究人员开发出一种新的方法,可以将石墨烯扁平的二维薄片变成三维形状,为未来石墨烯微电子机械系统混合装置和灵活电子器件的集成系统铺平了道路。

“据我们所知,该研究首次证明石墨烯集成各种不同微观结构几何体,包括椎体、柱体、拱形和倒金字塔形,以及三维金纳米粒子(AuNPs)/石墨烯混合结构的三维集成。

”伊利诺伊大学机械科学与工程系助理教授SungWooNam解释说。

“我们这种结构的灵活性和三维特征将用于符合人类皮肤和其他生物系统外形和特征的亲密生物传感设备。

三维突出的微观结构也通过最大化传感器和不平整的表面的有效接触面积提高了灵敏度。

“我们也预计这种新型三维集成方法将为微电子机械系统(MEMS)和用于感知与驱动的二维材料之间的高级混合设备提供便利。

石墨烯是一种sp2杂化的碳原子二维蜂巢晶格,它因具有较高的载流子迁移率、化学惰性和生物相容性而被广泛研究。

迄今为止,由于与三维微观结构表面转移过程中局部压力引起的断裂有关的难题,各种报道的石墨烯转移方法主要限于二维或曲面。

“我们的方法利用湿式转移方法和自适应基板工程,提供优于其他三维石墨烯制造/集成方法的几种重要优势。

”JonghyunChoi说,他是Nam研究小组的一名研究生,也是刊登于纳米快报(NanoLetters)文章的第一作者。

“我们的结果展示了一种石墨烯和各种形态、尺寸的三维几何图形集成的简单、通用和可扩展的方法。

不只是这些三维特征超出了之前报道的研究成果,我们也证明了围绕三维特征的集成石墨烯的均匀性和无损性。

研究人员将石墨烯集成到三维微观结构表面的鲁棒方法保持了石墨烯的完整性,三维特性的平面外大小范围为3.5-50μm。

这一过程包含三个连续步骤:

1)采用一种溶剂使基质膨胀2)蒸发的过程中溶剂收缩,使得石墨烯3)适应或符合准备好的基质的形状,实现石墨烯无损、大面积地整合到三维微观结构上。

“我们的膨胀、收缩和适应步骤经过优化,可以最小化三维微观结构周围石墨烯悬浮的程度并使三维集成顺利进行。

”Nam补充说。

“我们通过调整浸入有机溶剂的时间和单体与聚二甲硅氧烷(PDMS)基质固化剂的掺杂比例来控制基质的膨胀量。

详细的扫描电子显微技术、原子力显微技术、拉曼光谱学和电阻测量研究显示,基质膨胀量以及抗弯刚度转移膜会影响集成石墨烯的集成产量与品质。

为证明他们这种方法的通用性,研究人员将这一过程应用于各种三维微观结构集合体,也将金纳米粒子装饰的石墨烯混合结构集成到三维微观结构基质上,证明集成方法与其他杂化纳米材料的相容性。

来源:

伊利诺伊大学香槟分校

Theoryturnstorealityfornonlinearopticalmetamaterials

Aresearchteamhasrealizedoneofthelong-standingtheoreticalpredictionsinnonlinearopticalmetamaterials:

creationofanonlinearmaterialthathasoppositerefractiveindicesatthefundamentalandharmonicfrequenciesoflight.Suchamaterial,whichdoesn’texistnaturally,hadbeenpredictedfornearlyadecade.

Observationof“backwardphasematching”—aphenomenonalsoknownasthe“nonlinearmirror”—providedproofthatthisnewtypeofmetamaterialhadbeencreated.DemonstrationofthephenomenonwasreportedbyresearchersattheGeorgiaInstituteofTechnologyinapaperpublishedinNatureMaterials.

Thoughbyitselfthediscoverymayhavefewimmediatepracticalapplications,realizationofamaterialthathadbeenpredictedbytheoristsisamilestonethatcouldleadtonewareasofstudy,andpromptare-evaluationofthefundamentalrulesgoverningnonlinearoptics.

“Nonlinearopticsiscriticallyimportanttocontrollinglightforinformationprocessing,sensingandsignalgeneration,”saidWenshanCai,anassociateprofessorinGeorgiaTech’sSchoolofElectricalandComputerEngineeringwholedtheresearchteam.“Oureffortsubstantiallyexpandsthescopeofnonlinearlight-matterinteractionsinartificiallystructuredmediawithengineered,unconventionallinearandhigh-ordermaterialparameters.”

Engineeredmetamaterialsofferuniquepropertiesnotavailableinnaturalmaterials.Thisisespeciallyusefulinnonlinearoptics,wherematerialswithunconventionalpropertiescouldmakeadifferenceanywherelightmustbeactivelycontrolled.Researchersatmultipleinstitutionshavealreadycreatedopticalmetamaterialsthatcouldbeusedtoproducemoreefficientsolarcells,fastercomputerchips,improvedsensors—andevencloakingtopermitinvisibility.

“Thelinearresponsesofmetamaterialshavesubstantiallyaugmentedthelinearpropertiesavailablefromnaturally-occurringmaterials,”notedCai,whoalsoholdsafacultypositionintheGeorgiaTechSchoolofMaterialsScienceandEngineering.“Inthesameway,thestudiesofnonlinearmetamaterialsmayhavearevolutionaryimpactonthefieldofnonlinearoptics.Theunconventionalelectromagneticparametersmadepossiblebymetamaterialswillprovokeustorethinkandre-evaluatemanyoftheestablishedrulesofnonlinearoptics.”

Metamaterialsobtaintheirpropertiesfromarepeatedunitstructureratherthantheconstituentmaterials.Atthefrequencyrangebetweenvisibleandinfraredlight,subwavelengthmetallicstructurescanserveasbuildingblocks—essentially“meta-atoms”—tocreateopticalmaterialswithpropertiesthathavenotbeenavailableinthepast.

Experimentally,theresearcher

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2