中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx

上传人:b****0 文档编号:16878132 上传时间:2023-07-19 格式:DOCX 页数:12 大小:28.30KB
下载 相关 举报
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第1页
第1页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第2页
第2页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第3页
第3页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第4页
第4页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第5页
第5页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第6页
第6页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第7页
第7页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第8页
第8页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第9页
第9页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第10页
第10页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第11页
第11页 / 共12页
中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx

《中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx》由会员分享,可在线阅读,更多相关《中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx(12页珍藏版)》请在冰点文库上搜索。

中国矿业大学建筑环境与能源应用采暖课程设计说明书15.docx

中国矿业大学建筑环境与能源应用采暖课程设计说明书15

中国矿业大学建筑环境与能源应用采暖课程设计说明书2015

        目录    1.设计原始资料?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

3  2.最小传热阻校核?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

4  3.热负荷计算?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

6  4.采暖系统的选择与确定?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

11  5.散热器的选择?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

12  6.管道的布置?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

16  7.管道的水力计算?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

17  8附属设备的选型?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

20  9.

          表围护结构的温差正系数?

  序号12345678910  围护结构特征外墙、屋顶、地面以及与室外相通的楼板等闷顶和与室外空气相通的非采暖地下室上面的楼板等与有外门窗的不采暖楼梯间相邻的隔墙与有外门窗的不采暖楼梯间相邻的隔墙非采暖地下室上面的楼板,外墙上有窗时非采暖地下室上面的楼板,外墙上无窗且位于室外地坪以上时非采暖地下室上面的楼板,外墙上无窗且位于室外地坪以下时与有外门窗的非采暖房间相邻的隔墙、防震缝墙与无外门窗的非采暖房间相邻的隔墙伸缩缝墙、沉降缝墙?

  F的确定:

  a、外墙高度,本层地面到上层地面。

  斜屋面:

到门顶的保温层表面。

  长:

外表面到外表面,外表面到中心线,中心线到中心线。

b、门、窗按净空尺寸。

  C、地面、屋顶面积,地面和门顶按内廓尺寸,平屋顶,按外廓。

d、地下室,位于室外地面以下的外墙,按地面    围护结构的附加耗热量  朝向修正耗热量  产生原因:

太阳辐射对建筑物得失热量的影响,《规范》规定对不同朝向的垂直围护结构  进行修正.  修正方法:

朝向修正耗热量的修正率可根据不同地区进行选取,天津市的朝向修正率为:

  东:

-5%;    西:

-5%;    南:

-20%;    北:

5%;    将垂直外围护结构的基本耗热量乘以朝向修正率,得到该维护结构的朝向修正耗热量:

Qch?

;之后把Qch加减到基本耗热量上。

门窗缝隙渗入冷空气的耗热量  1、产生原因:

因风压与热质作用室外空气经门窗缝隙进入室内。

2、方法:

换气次数法。

        6    .Qi?

?

wCp(tn?

twn)  式中:

  Qi——渗入冷空气耗热量W;  .?

w——室外空气密度kg/m3;兰州为g/m3Cp——空气压质量比热1KJ/(kg·℃);  L——门窗缝隙渗入室内的冷空气量m3/(h·m),L=Vn,  其中,V为房间体积,n为换气次数;  换气次数表房间类型换气次数一面有外窗两面有外窗~1三面有外窗1~门厅2负荷计算  下面以机房为例进行热负荷计算:

  1、计算围护结构的传热耗热量Q1西外墙传热系数K=(m2?

C),温差修正系数?

=1,传热面积F=  ×=。

            西外墙的基本耗热量为,公式  Q1’?

?

KF(tn?

twn)=1×××W=  查得,兰州市的西朝向修正率取?

=-5%;朝向修正耗热量为Q1\=×()W=;北外窗传热系数K=。

,温差修正系数?

=1,传热面积F=2×2×2m2=  (m?

C)?

8m2。

北外窗基本耗热量为:

Q2?

?

KF(tn?

twn)=1××8×W=936W;  \查得,兰州市北向的朝向修正率取?

=6%;朝向修正耗热量为Q2=×(1+)=  北外门传热系数K=北外门的基本耗热量为:

  (m2?

C),温差修正系数?

=1,传热面积F=×2=  ?

Q3?

?

KF(tn?

twn)=1×××W=;  \查得,兰州市北向的朝向修正率取?

=%;朝向修正耗热量为Q2=×=北外墙传热系数K=。

,温差修正系数?

=1,传热面积F=。

  (m?

C)北外墙基本耗热量为:

  ?

Q3?

?

KF(tn?

twn)=1×××W=;  \查表得,兰州市北向的朝向修正率取?

=%;朝向修正耗热量为Q2=×        7    =  2、计算房间的冷风渗透耗热量  北外窗为推拉,中间为固定  北外窗缝隙长度为l=×4+2×4m=×2=m查附录7,兰州市的朝向修正系数北向n=1,北外窗的冷空气渗入量按下式计算,为  V?

Lln=××1=/m  3其中L——为每米、窗缝隙渗入室内的空气量,按冬季室外平均枫树,查《供热工程》,表1-6得  l——为门、窗缝隙的计算长度n——渗透空气量的朝向修正系数北外窗的冷风渗透耗热量为  Q21?

?

wCp(tn?

twn),  其中V——经过门窗缝隙渗入室内的总空气量  3?

kg/mw  ——供暖室外计算温度下的空气密度,二连浩特市的为    cp——冷空气的定压比热,c=  kj/kg?

℃  北外门缝隙长度为  l=×4+2×3=  查附录7,兰州市的朝向修正系数北向n=1,北外门的冷空气渗入量按下式计算,为  V?

Lln=××1=/m  3北外门的冷风渗透耗热量为  Q21?

?

wCp(tn?

twn)=/m33、冷风侵入耗热量  Q,s?

NQ,,21=×=449W4、房间总的耗热量为W建筑物总的供暖热负荷:

1、Q=  计算热指标:

        8    1,间的负荷面积热指标计算公式:

  Q    X?

    式中:

  FX——面积热指标;F——建筑物面积;  2,物总的供暖热负荷及采暖热指标  根据本建筑物的特点知:

建筑面积F=959m2所以供暖面积热指标,按式:

X=/959=/m2  其它房间的热负荷计算结果见附录表中。

  民用建筑的面积热指标      建筑类型住宅别墅办公医院试验楼旅馆影剧院qAn建筑类型图书馆幼儿园、托儿所学校商店礼堂食堂体育馆qAn50~70100~12558~8165~9568~9860~8590~12065~9075~12060~8065~100100~16085~14080~150按照规范规定办公楼的热负荷指标为58~81W/m2.  而机房于电脑本省还需要散热,故提供的问题的温度就更小,本设计所计算的负荷、热指标与规范规定存在偏差,分析其存在偏差的原因首先是建筑本身存在的不一致性,其次于所选用的保温材料及材料厚度不同所致;同时于计算存在误差而导致。

  四,采暖系统的选择与确定  系统形式的选择与确定  可供选择的系统形式按系统循环动力的不同,可分为重力循环系统和机械循环系统。

靠水的密度差进行循环的系统,称重力循环系统。

  表3-1供暖系统型式表序形式名适用范围特点号称1单管上作用半径不超过50m的升温慢、作用压力小、管径大、系统简      9    单、不消耗电能水力稳定性好可缩小锅炉中心与散热器中心距离2双管上作用半径不超过50m的升温慢、作用压力小、管径大、系统简供下回三层以下建筑单、不消耗电能式易产生垂直失调室温可调节3单户式单户单层建筑一般锅炉与散热器在同一平面,故散热器安装至少提高到300~400mm高度尽量缩小配管长度减少阻力靠机械力进行循环的系统,称机械循环系统。

机械循环热水供暖系统常用的几种型式:

  表3-2供暖系统型式表  序号型式名称适用范围特点常用的双管系统做法双管上供室温有调节要求的四层排气方便1下回式以下建筑室温可调节易产生垂直失调缓和了上供下回式系统的垂直失室温有调节要求且顶层不调象双管下供2能敷设干管时的四层以下安装供回水干管需设置地沟下回式建筑室内无供水干管,顶层房间美观排气不便可解决一般供水干管挡窗问题双管中供顶层供水干管无法敷设或3解决垂直失调比上供下回有利式边施工边使用的建筑3、对楼层扩建有利,排气不利解决垂直失调有利排气方便,能适应高温水热媒,双管下供热媒为高温水,室温有调4可降低散热器表面温度上回式节要求的四层以下建筑3、降低散热器传热系数,浪费散热器常用的一般单管系统做法垂直单管5一般多层建筑2、水力稳定性好,排气方便,安顺流式装构造简单当热媒为高温水时可降低散热器垂直单管顶层无法敷设供水干管的6表面温度双线式多层建筑2、排气阀的安装必须正确垂直单管降低散热器的表面温度7下供上回热媒为高温水的多层建筑2、降低散热器传热量、浪费散热式器垂直单管节约地沟造价,系统泄水不方便8不易设置地沟的多层建筑上供中回2、影响室内底层房屋美观,排气      10  供下回多层建筑式

  

        9式垂直单管三通阀跨多层建筑和高层建筑越式单双管式不便1、可解决建筑层数过多垂直失调的问题1011121314水平单管串联式水平单管跨越式分层式双水箱分层式避免垂直失调现象产生可解决散热器立管管径过大的问八层建筑以上题克服单管系统不能调节的问题常用的水平串联系统,经济、美单层建筑或不能敷设立管观、安装简便的多层建筑散热器接口处易漏水,排气不便单层建筑串联散热器组数入口设换热装置造价高过多时高温水热源1、入口设换热装置造价高管理较复杂低温水热源采用开式水箱,空气进入系统,易腐蚀管道  注:

1.无论系统大小,有条件时,尽量采用同程式,以便压力平衡。

  2.水平供水干管敷设坡度不应小于。

坡度应与水流方向相反,以利排气。

  考虑到本工程的实际规模和施工的方便性,本设计采用上供下回式机械循环上供下回同程式散热片安装形式为同侧的上供下回。

单独设置设备间,设计供回水温度为95/70℃。

  根据建筑的结构形式,布置干管和立管,为每个房间分配散热器组。

;  Q——散热器的散热量;  K——散热器的传热系数[W/(m2·℃)];tpj——散热器内热媒平均温度;  tn——供暖室内计算温度;  ?

1——散热器组装片数修正系数;  ?

2——散热器连接形式修正系数;?

3——散热器安装形式修正系数;  片数修正系统的范围乘以  ?

1对应的值,其范围如下:

  片数修正系数每组片数20?

1        12    另外,还规定了每组散热器片数的最大值,对此系统的M-132型散热器每组片数不超过20片。

  1、2、  散热器的传热系数K    散热器的传热系数K表示当散热器内热媒平均温度tpj与室内空气温度tn的差为1℃时,每平方米散热面积单位时间放出的热量,单位为W/。

选用散热器时希望散热器的传热系数越大越好。

  通过实验方法可得到散热器传热系数公式为        式中:

  K?

a(tpj?

tn)b      2?

K——在实验条件下,散热器的传热系数,W/(m?

C);  a、b——实验确定的系数,取决于散热器的类型和安装方式;  从上式可以看出散热器内热媒平均温度与室内空气温差tn越大,散热器的传热系数K值就越大,传热量就越多。

  t2、散热器内热媒平均温度p1散热器内热媒平均温度1)热水供暖系统  tpj应根据热媒种类和系统形式确定。

  式中:

  (tj?

tc)tpj?

2          tpj    ——散热器内热媒平均温度;——散热器的进水温度;  tj  tc——散热器的出水温度;  对于单管热水供暖系统,各组散热器是串联关系,所以各组散热器的进出口水温不同,应  (tin?

tout)Qrtm?

?

tin?

22?

cMp用以下公式计算:

式中:

  tm——散热器内热媒平均温度;  tin——散热器的进水温度;  tout——散热器的出水温度;  ?

——散热器的进流系数;c——水的比热;  Mp——立管流量,Kg/s;  Qr——散热器热负荷;  散热器的计算实例  以机房为例计算:

  查《供热工程》附录2-1,对M-132型散热器  k?

a(tpj?

tn)b        13    =        =/(m2.℃)  先假设片数修正系数?

1=,  查《供热工程》附录2-4得?

2=1,  散热器采用明装,查《供热工程》附录2-5?

3=散热器的散热面积:

  F?

Q?

1?

2?

3  K(tpj?

tn)  =×1×1×/()  =m2  M-132型散热器每片散热面积为则散热器的片数为  n=/=取17片  同理计算出其他各房间的散热器片数。

  其余的列于附表中;散热器的布置  布置散热器应注意以下规定  l、散热器宜安装在外墙窗台下,这样能迅速加热室外渗入的冷空气,阻挡沿外墙下降的冷气流,改善外窗对人体冷辐射的影响,使室温均匀。

当安装或布置管道有困难时,也可靠内墙安装。

如设在窗台下时,医院、托幼、学校、老弱病残者住宅中,散热器的长度不应小于窗宽度的75%;商店橱窗下的散热器应按窗的全长布置,内部装修要求较高的民用建筑可暗装。

  2、为防止冻裂散热器,两道外门之间,不准设置散热器。

在陋习建或其它有冻结危险的场合,应单独的立,支管供热,且不得装设调解阀。

  3、散热器在布置时,不能与室内卫生设备、工艺设备、电气设备冲突。

暖气壁龛应比散热器的实际宽度多350~400毫米。

台下的高度应能满足散热器的安装要求,非置地式散热器顶部离窗台板下面高度应≥50毫米,底部距地面不小于60mm,通常为150mm毫米,背部与墙面净距不小于25mm。

  4、在垂直单管或双管供暖系统中,同一房间的两组散热器可以串联连接;贮藏室、盥洗室、厕所和厨房等辅助用室及走廊的散热器,可同临室串联连接。

  5、公共建筑楼梯间的散热器,宜分配在底层或按一定比例分配在下部各层,住宅楼梯间一般可不设置散热器。

把散热器布置在楼梯间的底层,可以利用热压作用,使加热了的空气自行上到楼梯间的上部补偿其耗热量。

  6、在楼梯间布置散热器时,考虑楼梯间热流上升的特点,应尽量布置在底层。

住宅建筑分户计量的散热器选用与布置还应注意:

  安装热量表和恒温阀的热水采暖系统宜选用铜铝或钢铝复合型、铝制或钢制内防腐型、钢管型等非铸铁类散热器,必须采用铸铁散热器时,应选用内腔无黏砂型铸铁散热器;  采用热分配表计量时,所选用的散热器应具备安装热表的条件;        14    采用分户热源或供暖热媒水水质有保证时,可选用铝制或钢制管形、板式等各种散热器;  散热器的布置应确保室内温度分布均匀,并应可能缩短户内管道的产度;  散热器罩会影响散热器的散热量和恒温阀及配表的工作,安装在装饰罩内的恒温阀必须采用外置传感器,传感器应设在能正确反映房间温度的位置。

        六,管道的布置  干管的布置  供回水干管设置在管道井中,每个用户都从干管上接出一个支管,而形成各自的独立环路以便于分户计量。

  支管的布置  本设计入户的支管均设置在户内垫层内,垫层的厚度不应小于50mm,本系统散热器支管的布置形式有供、回水支管同侧连接和供、回水支管异侧连接两种形式,且支管均保证为的坡度,以便于排出散热器内积存的空气,便于散热。

  管道支架的安装  管道支架的安装,应符合下列的规定:

①位置应准确,埋设应平整牢固;  ②与管道接触应紧密,固定应牢靠,对活动支架应采用U形卡环。

  支架的数量和位置可根据设计要求确定,若设计上无具体要求时,可按下表的规定执行:

  表3-5支架间距的选择公称直径1520253240507080100125150200250300mm保温支架管的最大间距不保温管223344567834566781112  七,管道的水利计算  绘制系统图  根据暖气片组装片数的最大值将其分为几组后,确定总的立管数,绘制系统图,标明各段干管的负荷数,以及每组暖气片的片数和负荷数,并对各个管  段进行标注。

  水力计算  供暖系统水力计算的任务  在满足热负荷所要求的热媒流量条件下,确定系统的管段管径,以及系统的压力损失。

水利计        15

  

        算应具备的条件是,必须首先确定供暖系统的设备及管道布置,已知系统各管段的热负荷及管段的长度。

  按已知系统各管段的流量和系统的循环作用压力(压头)。

确定各管段的管径;按已知系统各管段的流量和各管段的管径,确定系统所必需的循环作用压力(压头);按已知系统各管段的管径和该管段的允许压降,确定通过该管段的水流量。

  室内热水供暖管路系统是许多串联或并联管段组成的管路系统。

管路的水力计算从系统的最不利环路开始,也即从允许的比摩阻最小的一个环路开始计算。

n个串联管段组成的最不利环路,它的总压力损失为n个串联管段压力损失的总和。

  热水供暖系统的循环作用压力的大小,取决于:

机械循环提供的作用压力,水在散热器内冷却所产生的作用压力和水在循环环路中困管路散热产生的附加作用压力。

各种供暖系统型式的总循环作用压力的计算原则和方法。

  进行水力计算时,可以预先求出最不利循环环路或分支环路的平均比摩阻Rpj,即    Rpj?

a?

P        ?

L式中:

ΔP——最不利循环环路或分支环路的循环作用压力,Pa;  ∑L——最不利循环环路或分支环路的管路总长度,m;  a——沿程损失约占总压力损失的估计百分数。

  根据式中算出的及环路中各管段的流量.利用水力计算图表,可选出最接近的管径.并求出  最不利循环环路或分支环路中各管段的实际压力损失和整个环路的总压力损失值。

  当系统的最不利循环环路的水力计算完成后,即可进行其它分支循环环路的水力计算。

《暖通规范》规定,热水供暖系统最不利循环环路与各并联环路之间(不包括共同管段)的计算压力损失相对差额,不应大于±15%。

  在实际设计过程中,为了平衡各并联环路的压力损失,往往需要提高近循环环路分支管段的比摩阻和流速。

但流速过大会使管道产生噪声。

目前,《暖通规范》,规定。

最大允许的水流速不应大于下列数值:

民用建筑/s  生产厂房的辅助建筑物2m/s,      整个热水供暖系统总的计算压力损失,宜增加10﹪附加值,以此确定系绕必需的循环作用压力。

  确定最不利环路水力计算方法  本设计的计算过程同程式双管热水供暖系统管路的水力计算过程,在整个系统中每一个户内环路构成一个独立的系统分别计算,计算步骤如下:

  首先在系统图上,对各管段进行编号,并注明管段长度和热负荷。

        16    计算通过最远立管的环路的总阻力,根据所选值R,和每个管段的流量G的值,查阅《供暖通风设计手册》中初选各管段的d、R、v的值,算出通过最远立管的环路的总阻力。

流量G的值可用以下公式计算得出:

  G?

    (tg’?

th’)        式中:

Q——管段的热负荷,W;    tg’——系统的设计供水温度,℃;  th’——系统的设计回水温度,℃。

  计算通过最近立管环路的总阻力,计算方法同1,2两部。

  求并联环路的压力损失不平衡率,使其不平衡率在?

25%以内,以确定通过环路各管段的管径。

  根据水力计算的结果,求出系统的的总压力损失,及各立管的供、回水节点间的资用压力。

  根据立管的资用压力和立管的计算压力损失,求中间各并联立管的压力损失不平衡率,使其不平衡率在?

25%以内,从而确定出各立管的管径。

  于此系统为机械循环异程式热水供暖系统,所以其水力计算方法及步骤如下:

①计算通过最远立管的环路的压力损失,确定出供水干管各个管段管径。

  ②用同样的方法,计算通过最近立管错误!

未找到引用源。

的环路,从而确定立管错误!

未找到引用源。

和回水各管段的管径及其压力损失。

  ③并联环路立管上的压力不平衡率,使其不平衡率在?

25%范围之内。

  ④据水力计算结果,求出系统的总压力损失及各立管的供水和回水节点间的资用压力。

⑤定立管的管径。

根据各立管的资用压力和立管的计算压力损失,求各立管的不平衡率。

不平衡率应在正负百分之二十五范围之内。

  水力计算中应注意的问题:

  采暖系统水力计算必须遵守流体连续性定律,即对于管道节点(如三通、四通等处)热媒流入流量之和等于流出流量之和。

  热媒的流速是影响系统的经济合理程度的因素之一。

为了满足热媒流量要求,对于机械循环热水采暖系统,增大热水流速虽然可以缩小管径,节省管材,但流速过大,压力损失增加,会多消耗电能,甚至可能在管道配件(如三通、四通等)处产生抽力作用,破坏系统内热水正常流动,使管道发生振动.产生噪音。

因此,《采暖规范》中规定:

采暖管道中的热媒流速,应根据热水或蒸汽的资用压力、系统形式、防噪声要求等因素确定。

  采暖系统水算必须遵守并联环路压力损失平衡定律。

  系统在运行中,构成并联环路的各分支环路的压力损失总是相等的,并且等于其分流点与合流点之间的压力总损失。

在设计时只能尽量的选择在保证热媒设计流量的同时使各个并联环        17    路的压力损失接近于平衡的管径。

只要保证并联环路各分支环路之间的计算压力损失差值在允许范围之内,则流量的变化是不大的。

  热水采暖系统的并联环路各分支环路之间的计算压力损失允许差值查表。

在进行系统水力计算时,系统并联环路各分支环路之间的计算压力损失差值如果超过了允许差值,就必须调整一部分管道的管径,使之满足要求。

  并联环路备分支环路之间的压力损失允许差值查手册。

表4-1并联环路各分支环路之间的压力损失允许差值  系统形式双管同程式双管异程式  热水采暖系统最不利环路的单位长度沿程压力损失,除很小的系统外,一般以不超过60~120Pa/m为宜。

  于计算、施工误差和管道结垢等因素的存在,采暖系统的计算压力损失宜采用10%的附加值。

  供水干管末端和回水干管始端的管径不宜小于DN20,以利于排除空气,并小数显著的影响热水流量。

  采暖系统各并联环路,应设置关闭和调节装置。

主要是为了系统的调节和检修创造必要的条件。

  允许差值1525系统形式单管同程式单管异程式允许差值1015水力计算的示例    本设计以最不利环路为例进行水力计算:

    在系统图上对个管段进行编号,并注明各管段的热负荷和管长。

根据各管段的热负荷计算各管段的流量,以管段1为例进行计算:

  G?

  (tg’?

th’)  =×/95-70  =  查《供热工程》附录4-5取公称直径DN50用补差法计算可求出v=/s,。

R=/s确定长度压力损失:

△Py=Rl=×=  确定局部阻力损失Z:

根据图中各管段的实际情况列出各管段的局部阻力管件名称,查《供热工程》附录4-2得到局部阻力系数列于表4-2中。

管段1的局部阻力系数为?

?

=据流速查《供热工程》附录4-3查出动压头=;则:

  △Pj=×38=  则管段1的压力损失为:

△Py+△Pj=            18        八,辅助设备的选择  水泵选型  采暖热水按供回水温差25℃计算,热水流量约为/h,取安全系数,热水泵流量选择/h。

  扬程按下式计算:

  HP?

hf?

hd?

hm  Pa    式[8]  式中:

hf、hd――水系统总的沿程阻力和局部阻力损失,Pa;  hm――设备阻力损失,Pa;  本工程选择的半集热式盘管换热器压阻损失为20kPa,则Hp=+20000=。

取安全系数后,水泵扬程选,即。

选择“格兰富”立式管道泵,性能参数见厂家提供的选型计算书。

水泵选择一用一备的方式安装。

膨胀水箱选型  

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2