350MW超临界机组控制方案说明ADOC.docx

上传人:b****2 文档编号:16946857 上传时间:2023-07-20 格式:DOCX 页数:24 大小:107.15KB
下载 相关 举报
350MW超临界机组控制方案说明ADOC.docx_第1页
第1页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第2页
第2页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第3页
第3页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第4页
第4页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第5页
第5页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第6页
第6页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第7页
第7页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第8页
第8页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第9页
第9页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第10页
第10页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第11页
第11页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第12页
第12页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第13页
第13页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第14页
第14页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第15页
第15页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第16页
第16页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第17页
第17页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第18页
第18页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第19页
第19页 / 共24页
350MW超临界机组控制方案说明ADOC.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

350MW超临界机组控制方案说明ADOC.docx

《350MW超临界机组控制方案说明ADOC.docx》由会员分享,可在线阅读,更多相关《350MW超临界机组控制方案说明ADOC.docx(24页珍藏版)》请在冰点文库上搜索。

350MW超临界机组控制方案说明ADOC.docx

350MW超临界机组控制方案说明ADOC

仁丘2×350MW超临界机组

MCS系统逻辑设计说明

设计:

校对:

审核:

批准:

新华控制工程有限公司

2011年8月28日

 

超临界机组控制方案说明

1.超临界机组模拟量控制系统的功能要求

超临界机组相对于亚临界汽包炉机组,有两点最重要的差别:

一是参数提高,由亚临界提高至超临界;二是由汽包炉变为直流炉。

正是由于这种差别,使得超临界机组对其控制系统在功能上带来许多特殊要求。

也正是由于超临界机组与亚临界汽包炉机组这两个控制对象在本质上的差异,导致各自相对应的控制系统在控制策略上的考虑也存在差别。

这种差别在模拟量控制系统中表现较为突出。

此处谨将其重点部分做一概述。

1.1超临界锅炉的控制特点

(1)超临界锅炉的给水控制、燃烧控制和汽温控制不象汽包锅炉那样相对独立,而是密切关联。

(2)当负荷要求改变时,应使给水量和燃烧率(包括燃料、送风、引风)同时协调变化,以适应负荷的需要,而又应使汽温基本上维持不变;当负荷要求不变时,应保持给水量和燃烧率相对稳定,以稳定负荷和汽温。

(3)湿态工况下的给水控制——分离器水位控制,疏水。

(4)干态工况下的给水控制-用中间点焓对燃水比进行修正,同时对过热汽温进行粗调。

(5)汽温控制采用类似汽包锅炉结构,但应为燃水比+喷水的控制原理,给水对汽温的影响大;给水流量和燃烧率保持不变,汽温就基本上保持不变。

1.2超临界锅炉的控制重点

超临界机组由于水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。

因此,超临界机组的负荷控制是与给水控制和燃料量控制密切相关的;而维持燃水比又是保证过热汽温的基本手段;因此保持燃/水比是超临界机组的控制重点。

本公司采用以下措施来保持燃/水比:

(1)微过热蒸汽焓值修正

对于超临界直流炉,给水控制的主要目的是保证燃/水比,同时实现过热汽温的粗调,用分离器出口微过热蒸汽焓对燃/水比进行修正,控制给水流量可以有效对过热汽温进行粗调。

(2)中间点温度

本工程采用中间点温度(即分离器出口温度)对微过热蒸汽焓定值进行修正。

当中间点温度过高,微过热蒸汽焓定值立即切到最低焓,快速修改燃/水比、增加给水量。

当中间点温度低与过热度,表明分离器处于湿态运行,此时焓值修整切为手动。

(3)喷/水比(过热器喷水与总给水流量比)

在超临界机组如果喷/水比过大(或过小),即流过水冷壁的给水量过小(或过大),用喷/水比修正微过热蒸汽焓定值(即修正燃/水比),改变给水流量,使过热减温喷水处于良好的控制范围内。

(4)燃水指令的交叉限制回路

本工程给水最小流量限制、燃/水交叉限制,主要目的是在各种工况下防止燃料与给水比的失调。

燃料指令由锅炉指令加变负荷超调量前馈,经给水指令增、减闭锁限制(中间点温度正常范围内);给水指令经燃料指令增、减闭锁限制(中间点温度正常范围内)。

(5)高加解列超调前馈

高加解列,给水温度偏低,通过超调前馈快速减少给水量(超调量与负荷成比例关系),以确保燃/水比调整使过热汽温在正常范围内。

注:

高加解列超调量只受最小流量限制,不受其他条件影响。

1.3超临界锅炉的给水控制

超临界锅炉给水控制要完成了多重控制任务:

控制燃/水比、实现过热汽温的粗调、满足负荷的响应。

1)给水指令组成

给水指令由燃料指令经f(x)对应的总给水量减去过热器喷水量、通过燃/水比修正,加变负荷超调量前馈,经燃料指令增、减闭锁限制(中间点温度正常范围内),加高加解列前馈。

具体分析如下:

(1)给水指令的前馈

给水指令的前馈包括:

静态前馈和动态前馈二部分组成。

①静态前馈

这是给水指令的主导部分,由燃料指令折算出锅炉需要的给水总量,扣除减温水量后,作为直流炉的给水指令,通过这部分的静态前馈,基本保证了燃/水之比。

由于燃料、给水对过热汽温反应存在时差,因此给水指令要经惯性环节延迟。

②变负荷超调量动态前馈

变负荷超过5MW时对燃料、给水指令超调前馈,主要是为了提高机组的负荷响应速度。

3高加解列超调前馈

高加解列,给水温度偏低,通过超调前馈快速减少给水量(超调量与负荷成比例关系),以确保燃/水比调整使过热汽温在正常范围内。

(2)给水指令的反馈修正

静态前馈部分基本上确定了燃料与给水流量之间的关系,在实际运行中,这一关系还应根据实际情况作必要的修正,使分离器出口焓维持在定值附近。

反馈修正的思路为:

当过分离器出口焓大于设定值时,适当逐步加大给水指令;反之,则减少给水指令。

焓定值的确定可分为二种情况,一种是正常情况下焓定值的确定;另一种是当分离器出口超温时的焓定值计算。

1正常情况下分离器出口焓定值的计算

在正常情况下,分离器出口焓定值由二部分组成:

一是基准的焓设定值;二是由实际运行情况确定的定值修改量。

a.基准的焓设定值

基准的焓设定值是分离器出口压力的函数,f(x)代表了不同负荷对分离器出口蒸汽保证一定的过热度的控制要求。

b.焓设定值的修正

焓控设定值修正是指根据分离器出口温度或减温水流量在一定范围内修正焓控设定值。

当分离器出口温度大于定值3℃(初设),经过焓设定积分器将焓设定值适当减少,相应增加给水流量指令;反之相反。

用喷/水比(过热器喷水量/总给水量比值)对焓控定值进行修正,其因是直流锅炉的给水流量控制与减温水总量的控制之间存在着必然的联系,比如当过热喷水量增加,就说明前面的水冷壁的给水流量偏小,即可以通过减小焓控定值,增加给水流量而使过热喷水恢复到原来的值。

注:

焓定值修正范围:

中间点温度过热度在超过热、欠过热范围内,即焓控设定值必须保证在Hmax和Hmin之间。

2分离器出口超温时的焓定值计算

给水控制系统还必须实现防止水冷壁管出口温度的越限,当分离器出口温度偏差大于3℃时,按上节方法减小焓设定值;当分离器出口温度大于限值(超过热)时,控制回路将焓设定值迅速切至最低限Hmin,从而快速增加给水流量,防止水冷壁出口温度进一步上升;当水冷壁出口温度超过其对应负荷下的温度保护定值,则发生MFT,这是直流锅炉为防止水冷壁管超温而设置的一个重要保护。

2)湿态运行方式

(1)当分离器出口温度低于欠热度(分离器出口压力函数),即为湿态方式。

(2)湿态方式燃/水比切手动,用上述给水指令与给水流量的偏差的PI调节控制给水调门或电动给水泵。

(3)锅炉处于非直流运行方式,焓控制器处于跟踪状态,给水控制保持32%BMCR流量指令,由于分离器处于湿态运行,分离器中的水位由分离器至除氧器以及分离器至扩容器的组合控制阀进行调节,给水系统处于循环工作方式;在机组燃烧率大于32%BMCR后,锅炉逐步进入直流运行状态,焓控制器开始工作。

3)干态运行方式

用给水指令与给水流量的偏差的PI调节控制用电泵或汽泵转速,即控制给水量。

干态方式用分离器出口焓对燃/水比进行修正。

4)RB给水指令

RB时经燃料指令折算的给水指令缩短延迟时间,60秒后用过热器入口焓对燃/水比进行修正(在RB过程,喷/水比不参与),确保过热汽温在可控范围内。

5)给水控制系统采用二台50%汽泵、主给水调门,二台机组共用一台30%电泵。

正常工况二台汽泵运行,主给水调门或主给水电动门全开,控制汽泵转速来调节负荷。

给水控制系统属单回路控制,汽泵控制一拖二,不采用平衡算法,原因是给水回路是快速跟随系统,控制系统变参数由控制内部变结构完成(一台汽泵或二台汽泵投入自动,对不采用平衡算法其控制增益要调整的),即分单泵、双泵调节。

1.4改善超临界机组协调控制调节品质

为了提高机组负荷响应的能力,主要方法为:

1采用机组指令并行前馈到机、炉主控,即要充分利用机组的蓄热,也要提速燃烧指令;

2加快锅炉侧的快速响应尤其是给水的快速响应,对给水和给煤应有合理的、经智能化处理的超调量,加快整个机组的动态响应速度。

1.4.1变负荷时,燃水指令的超调

①当增负荷幅度5MW,同时实际负荷变化率大于0.1MW/min(这是二次确认,即按下《GO》。

),启动增负荷超调指令。

3超调持续时间的判断逻辑

当增负荷幅度差值2MW、机组实际负荷指令与实发功率偏差小于1.5MW,上述任一条件成立,增负荷超调结束。

③超调量

超调量与变负荷速率、实际负荷指令有关。

变负荷速率越快,超调的量也越大;负荷指令越高,超调的量也越大。

④当遇到加负荷后随即又减负荷的工况,则加负荷超调立刻结束,同时触发减负荷超调。

反之亦然。

注:

减负荷超调类同。

1.4.2增加一次风量的前馈

一次风压设定值是机组指令的正比函数,通过改变一次风压来提高锅炉变负荷速率;利用锅炉主控指令的前馈信号同时改变一次风量,充分利用磨煤机内的蓄粉来快速响应负荷需要。

2.本公司超临界机组协调控制策略

协调控制系统设计原则是将汽机、锅炉作为整体考虑。

在综合控制策略基础上,通过预测提前量来提高机组负荷响应能力、抑制动态偏差;与各种非线性、方向闭锁等控制机理的有机结合,协调处理燃料与给水匹配,使过热蒸汽温基本稳定,协调控制机组功率与机前压力,协调处理负荷要求与实际能力的平衡。

在保证机组具备快速负荷响应能力的同时,维持机组主要运行参数的稳定。

图一350MW超临界机组负荷控制中心

2.1机组指令处理回路

机组指令处理回路是机组控制的前置部分,它接受操作员指令、AGC指令、一次调频指令和机组运行状态信号。

根据机组运行状态和调节任务,对负荷指令进行处理使之与运行状态和负荷能力相适应。

2.1.1AGC指令

AGC指令由省调远方给定,4~20mA对应150MW~350MW。

当机组发生RUNUP/RUNDOWN、RUNBACK,退出AGC控制。

2.1.2一次调频指令

一次调频指令为频率对应功率关系,频率调节死区范围为±0.033HZ(3000±2r/min),频率调节范围确定为50±0.2HZ,即49.8~50.2HZ(对应于汽轮机转速控制范围为3000±12r/min),对应±20MW。

当负荷达到上限350MW或下限160MW对一次调频信号进行方向闭锁,当机组发生RUNUP/RUNDOWN、RUNBACK时退出一次调频控制。

2.1.3机组指令的实际能力识别限幅功能

机组指令的实际能力识别限幅是根据机组运行参数的偏差、辅机运行状况,识别机组的实时能力,使机组在其辅机或子控制回路局部故障或受限制情况下的机组实际负荷指令与机组稳态、动态调节能力相符合。

保持机组/电网,锅炉/汽机和机组各子控制回路间需要/可能的协调,及输入/输出的能量平衡。

机组指令的实际能力识别限幅功能,反映了协调控制系统一种重要设计思想——控制系统自适应能力:

1)正常工况——“按需要控制”,实际负荷指令等于目标指令;

2)异常工况——“按可能控制”,目标指令跟踪实际负荷指令。

机组指令的实时能力识别限幅功能主要有:

1)方向性闭锁

2)迫升/迫降(RunUp/RunDown)

3)辅机故障快速减负荷(Runback)

所有机组实时能力识别限幅功能,均设计有超驰优先级秩序,并具备明了的CRT显示。

2.1.3.1方向闭锁功能

方向闭锁技术作为CCS的安全保护,具有下例功能:

1)防止参数偏差继续扩大的可能;

2)防止锅炉各子控制回路间及锅炉、汽机间的配合失调有继续扩大的可能。

2.1.3.1.1机组指令增闭锁

1)机控指令达上限;

2)锅炉指令增闭锁;

3)给水控制增闭锁;

4)PT

5)引风控制增闭锁;

6)送风控制增闭锁;

7)一次风控制增闭锁;

8)RUNBACK。

2.1.3.1.2机组指令减闭锁

1)机控指令达下限;

2)锅炉指令减闭锁;

3)给水控制减闭锁;

4)PT>PS;

5)引风控制减闭锁;

6)送风控制减闭锁;

7)一次风控制减闭锁。

2.1.3.2迫升/迫降(RunUp/RunDown)指令

迫升/迫降作为CCS的一种安全保护,具备按实际可能自动修正机组指令功能。

迫升/迫降主要作用是对有关运行参数(燃料量、送风量、给水流量、一次风压)的偏差大小和方向进行监视,如果它们超越限值,而且相应的指令已达极限位置,不再有调节余地,则根据偏差方向,对实际负荷指令实施迫升/迫降,迫使偏差回到允许范围内,从而达到缩小故障危害的目的。

2.1.3.2.1迫升

1)机组指令减闭锁;

2)下列任一条件成立:

(1)机前压力高于定值3%;(以下数值暂定)

(2)风量指令小于总风量5%;

(3)给水指令小于给水流量5%;

(4)一次风压高于设定值1KPa。

2.1.3.2.2迫降

1)机组指令增闭锁;

2)下列任一条件成立:

(1)机前压力低于定值3%;(以下数值暂定)

(2)风量指令大于总风量5%;

(3)给水指令大于给水流量5%;

(4)一次风压低于设定值1KPa。

2.1.3.3辅机故障快速减负荷(Runback)

机组主要辅机在运行中跳闸是突发事件,此时若仅靠运行人员操作,由于操作量大、人为因素多,不能确保机组安全运行。

因此RB功能是否完善是衡量CCS系统设计重要指标。

本公司根据多年RB功能设计与工程实践,提出“以静制动、综合协调”的RB控制策略,在众多电厂得到成功实施,并取得良好的经济效益和社会效益。

以静制动——指发生RB工况时,BMS按要求切除多于燃料,CCS根据RB目标值计算出所需的燃料量后,锅炉主控处于静止状态。

综合协调——指发生RB工况时,协调各子系统以确保运行工况的平衡过渡,汽机主控维持负荷与机前压力关系。

在快速减负荷的同时要对某一辅机跳闸引起的运行工况扰动进行抑制,即采用适当的前馈量,以减小RB工况初期影响机组运行稳定的不利因素。

对外协调BMS、DEH、SCS控制系统快速、平稳地把负荷降低到机组出力允许范围内。

2.1.3.3.仁丘350MW超临界燃煤机组RB控制策略(简介)

1)Runback项目

(1)运行中一台引风机跳闸;

(2)运行中一台汽动给水泵跳闸;

(3)运行中一台磨煤机跳闸。

2)BMS快速且切除磨煤机完成粗调(切磨方式FSSS设计,以下只供参考)

(1)RB发生时,保留对冲二台磨、一层半粉(优先采用下层),投对应一台磨油枪,本工程如四台磨正常运行(双进双出),则保留B、D磨,对应的下、中层火咀;油枪选择可采用B磨油枪(前墙下层油枪),如果不成功,则改投D磨油枪。

(2)三台磨运行,保留对冲二台磨、一层半粉;四台磨运行(一台单进双出或单进单出),先切除故障磨,再按三台磨原则处理。

投一台保留磨油枪。

(3)大于二台磨运行,保留对冲二台磨(下层优先),愿则先切除故障磨,再切除单侧磨,切除间隔6秒。

相关的燃烧器出口门关闭,对应的容量风门、旁路风门关闭。

注:

前后对冲、双进双出磨,组合复杂,是否采用保留前后墙对冲,由用户及FSSS专业敲定。

(4)磨煤机运行中跳闸,按上述原则投油。

CCS判断是否产生磨煤机RB?

是,其它处于自动工况容量风门增大,确保燃料平衡;如果是,发RB信号;同时处于自动工况的容量风门立即开大,尽量减少燃料量失衡,20秒后维持最大可能出力。

图二A汽泵跳闸RB1

3)细调由CCS完成

(1)RB发生时BMS快速切除燃料,同时引风调节前馈关小(幅度与切除燃料量成比例)。

(2)CCS根据RB发生前单位煤耗(实时)计算目标值所需的燃料量,等BMS完成切除燃料后,根据目标燃料量与保留燃料量比较,通过RB燃料调节,维持目标燃料量(本工程通过容量风来控制燃料)。

(3)RB过程中汽机主控增闭锁。

(4)低于目标负荷或负荷变化率小于3MW/min,RB过程结束。

注:

抽汽工况根据蒸汽流量判断(蒸发量折算到机组功率)

4)给水指令是锅炉煤量的函数,此时给水指令的延迟时间要自动减少,即

快速保持燃/水比;并采用分离器出口焓对燃/水比进行修正,确保过热汽

温在可控范围内。

图三A汽泵跳闸RB2

5)利用DEHRB接口实现快速降负荷(汽机主控采用脉冲量接口)

RB过程的主要手段是快速切除燃料,在克服燃料惯性后,其主汽压力快速下降,此时汽机主控仍然采用脉冲量控制,不能快速关调门,即不能维持《机前压力——负荷关系》;当机前压力低于滑压定值0.3MPa,通过DEHRB接口动作,关小调门,来维持机前压力与负荷关系;在机前压力回升到低于滑压定值0.1MPa,恢复CCS遥控;当机前压力再低于滑压定值0.3MPa,DEHRB接口再次动作,维持机前压力与负荷关系,同时快速降负荷。

注:

本工程采用模拟量接口,有专门机侧RB调节器,因此CCS送DEHRB信号是禁止的。

6)内部协调

如果一台引风机在运行中跳闸产生RB工况时,则对送风机控制进行相应比例

前馈,以减小炉膛压力波动幅度。

3.协调控制系统简介

3.1协调控制方式

3.1.1协调控制分MAN、BF、TF、CCBF、CCTF五种方式

1)MAN方式

MAN方式——即锅炉主控、汽机主控都在手动方式。

2)BF方式

BF方式——炉跟机,即锅炉控制主汽压力,汽机主控在手动方式。

3)TF方式

TF方式——机跟炉,即汽机控制主汽压力,锅炉主控在手动方式。

4)CCBF(炉跟机)方式

CCBF方式——即汽机控制功率,锅炉控制压力。

这是一种控制功率为主的综合控制方式,机组指令按比例直接作用到汽机、锅炉主控;DEB信号作为前馈作用到锅炉主控调节模块,功率偏差、机前压力偏差作为细调。

为了限制过多失放蓄热,在汽机主控设计用机前压力偏差对功率定值进行修正。

5)CCTF(机跟炉)方式

CCTF方式——即锅炉控制功率,汽机控制压力。

这是一种控制压力为主的综合控制方式,机组指令按比例直接作用到锅炉、汽机主控;DEB信号作为前馈作用到锅炉主控调节模块,功率偏差、机前压力偏差作为细调。

这里用功率偏差对机前压力控制进行前馈,在保证机前压力稳定的前提下,减小功率偏差;同时用机前压力偏差对功率控制进行前馈,在保证功率稳定的前提下,减小机前压力偏差。

3.1.2负荷控制中心

负荷控制中心是一体化人机接口。

除显示重要参数外,它包括以下功能:

1)锅炉主控操作器

内容:

定压、滑压偏置、变压速率设定,定压方式下压力保持、进行功能;容量风指令及容量风均值;磨入口风压显示。

2)汽机主控操作器

内容:

负荷上下限、变负荷速率设定;汽机主控指令、DEH负荷参考及汽机各阀门开度显示。

3)操作员指令

在CCS方式下通过操作员指令达到改变负荷目的,其指令具有保持、进行功能;

4)一次调频

一次调频是根据电网频率与额定频率(50HZ)之差,综合电网安全、机组的调峰能力,设定为0.0167HZ(1rpm)对应2MW。

此转差功率关系直接作用于DEH内部,从而达到快速改变负荷。

CCS接收转差频率关系起到同步作用,否则将进行负荷拉回;也可由CCS单独完成一次调频功能。

当CCS发生Runback、Runup、Rundown,切除CCS一次调频。

5)重要状态信息及RB、RU、RD投切功能

增、减闭锁,RU、RD及不同辅机RB状态指示,RB、RU、RD在协调方式下,可以投入(RB需要经过试验)。

操作员指令投入自动(AGC控制),负荷由中调控制。

3.2锅炉主控方案

锅炉主控分三种工况:

1)炉跟机——调节算法输入:

机组指令、DEB为前馈信号,机前压力与设定值相比较。

平衡算法输入:

调节算法输出作为容量风指令;容量风指令均值作为反馈。

2)机跟炉——调节算法输入:

机组指令、DEB为前馈信号,机组指令与实发功率相比较。

平衡算法输入:

调节算法输出作为容量风指令;容量风指令均值作为反馈。

3)RB工况:

RB调节器控制容量风,此时锅炉主控处于机跟炉方式,跟踪校准后的燃料指令均值;RB结束,自动转为正常的机跟炉方式。

注:

本系统用积分模块组成平衡算法。

1)DEB信号

采用与汽机调阀开度成正比的信号

作为锅炉负荷前馈,式中微分项在动态过程中加强燃烧指令,以补偿机、炉之间对负荷要求响应速度的差异。

由于要求补偿的能量不仅与负荷变化量成正比,而且还与负荷水平成比例,所以微分项要乘以

式中:

P1——首级压力;PT——机前压力;PS——机前压力定值。

2)燃料信号的热值补偿

燃料量的热值补偿环节,用积分无差调节特性来保持燃料信号与锅炉蒸发量之间的对应关系,它和总燃料量信号之差经积分运算后送到乘法模块对燃料信号进行修正。

3)风/煤交叉

风/煤交叉采用锅炉燃料指令(经煤/水交叉限制)与该指令经惯性环节输出相比较,取大值控制风量、取小值控制燃料量,可以避免实际信号波动对控制带来负面影响,方便地实现了加负荷先加风、后加煤;减负荷先减煤、后减风的“富风”策略。

5)滑压定值

滑压定值是负荷函数,增加滑压偏置,既能满足运行使用的灵活性,又能解决滑压、定压的无扰切换。

6)高加解列对锅炉主控影响

高加解列D突变(即DEB指令突变),对锅炉主控有影响,我们采用DEB指令保持20秒,以抑制其不利因素。

3.3汽机主控

汽机主控在BF方式下控制功率,当机前压力偏差超出±0.3MPa,对功率设定值进行修正,减少闭锁现象。

在TF方式下控制机前压力,用功率偏差对压力定值进行修改。

RB过程也采用TF方式,用专用RB调节器,维持负荷与机前压力关系;RB过程机组指令跟踪实发功率,常规的TF调节器处于跟踪状态。

当送DEHRB接口动作,汽机主控跟踪负荷参考。

RB结束,进入常规的TF控制方式。

3.4磨煤机控制

3.4.1磨机负荷控制(容量风挡板控制)

煤粉由容量风带出磨煤机,在磨内粉位一定的情况下(即风/粉比一定),控制容量风的流量,就可以控制磨的出力。

燃料主控的指令直接作用于容量风挡板控制磨煤机负荷,自动时运行人员可以加一定量的偏置以调整每台磨的出力。

3.4.2磨机总风量控制(旁路风挡板控制)

磨煤机的总风量包括容量风和旁路风,容量风用于输送煤粉,流量与磨的负荷成正比,旁路风有两个作用:

干燥原煤及保证磨最小总风量,防止煤粉在管道沉积。

给煤机转速与磨的总风量对应的函数曲线f(x)保证磨风量设定值大于磨最小总风量。

另外,给煤量的变化对磨的出口温度影响也较大,当出口温度偏离设定值时,适当调整旁路风量的定值,调节磨的出口温度。

3.4.3磨煤机粉位控制

双进双出磨的优点是对负荷变化的响应快,其原因是磨出力的改变是通过容量风流量的改变而改变的。

而前提条件是,磨的料位必须保持恒定,即风/粉比恒定。

因此,磨的料位控制也是双进双出磨最基本的控制之一,也是投磨煤机负荷(容量风挡板)自动的必要条件。

差压信号——在磨的大罐底部装有两个差压测量装置,驱动端、非驱动端各一个。

装置由下向上对煤粉吹出恒定流量的气流,通过测量煤粉层上面与气流下端的差压,可测得煤粉的料位。

差压测量装置定期进行吹扫,防止煤粉堵塞。

在吹扫过程中,差压信号无效,此时应保持吹扫前的测量值,待吹扫结束后,信号才有效,此时恢复使用测量的信号。

3.4.4磨煤机出口温度控制

磨煤机的出口温度通过磨的冷、热风挡板开度反比例控制。

在控制磨的出口温度同时保持磨的入口总风量不变。

在暖磨期间,不控制磨的出口温度,而控制磨的入口风温。

3.5引风系统

本系统采用二台50%轴流风机,引风控制采用平衡算法,以满足一台引风机运行中跳闸,该风机控制动叶超驰关闭;另一台运行引风机自动增加出力。

系统设计防内爆、平衡算法调节死区消除,方向闭锁和联锁保护功能。

1)防内爆

发生MFT瞬间炉膛压力急剧下降,可能发生炉膛变形。

因此一旦发生MFT、炉膛压力不高,运行中的引风调节机构

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2