汽车专业英语全文翻译.docx

上传人:b****2 文档编号:16981739 上传时间:2023-07-20 格式:DOCX 页数:52 大小:60.09KB
下载 相关 举报
汽车专业英语全文翻译.docx_第1页
第1页 / 共52页
汽车专业英语全文翻译.docx_第2页
第2页 / 共52页
汽车专业英语全文翻译.docx_第3页
第3页 / 共52页
汽车专业英语全文翻译.docx_第4页
第4页 / 共52页
汽车专业英语全文翻译.docx_第5页
第5页 / 共52页
汽车专业英语全文翻译.docx_第6页
第6页 / 共52页
汽车专业英语全文翻译.docx_第7页
第7页 / 共52页
汽车专业英语全文翻译.docx_第8页
第8页 / 共52页
汽车专业英语全文翻译.docx_第9页
第9页 / 共52页
汽车专业英语全文翻译.docx_第10页
第10页 / 共52页
汽车专业英语全文翻译.docx_第11页
第11页 / 共52页
汽车专业英语全文翻译.docx_第12页
第12页 / 共52页
汽车专业英语全文翻译.docx_第13页
第13页 / 共52页
汽车专业英语全文翻译.docx_第14页
第14页 / 共52页
汽车专业英语全文翻译.docx_第15页
第15页 / 共52页
汽车专业英语全文翻译.docx_第16页
第16页 / 共52页
汽车专业英语全文翻译.docx_第17页
第17页 / 共52页
汽车专业英语全文翻译.docx_第18页
第18页 / 共52页
汽车专业英语全文翻译.docx_第19页
第19页 / 共52页
汽车专业英语全文翻译.docx_第20页
第20页 / 共52页
亲,该文档总共52页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

汽车专业英语全文翻译.docx

《汽车专业英语全文翻译.docx》由会员分享,可在线阅读,更多相关《汽车专业英语全文翻译.docx(52页珍藏版)》请在冰点文库上搜索。

汽车专业英语全文翻译.docx

汽车专业英语全文翻译

汽车工程专业英语全文翻译

一当今的汽车一般都由15000多个分散、独立且相互配合的零部件组成。

这些零部件主要分为四类:

车身、发动机、底盘和电气设备。

Body:

车身

Engine:

发动机

Brakes:

制动器

Powertrain:

传动系

Steering:

转向系

Electrical:

电器及电子设备

Suspension:

悬架

Layoutofapassengercar:

乘用车总布置

Layoutofacommercialvehicle:

商用车总布置

1.1车身

汽车车身是由车窗、车门、发动机罩和行李箱盖焊接在金属板外壳发动机

发动机作为动力装置。

最常见的发动机气缸的排列方式称为发动机配置。

直列式发动机的汽缸呈一列布置。

这个设计创造了一个简单的发动机缸体铸造。

在车辆应用中,汽缸数一般是2-6缸,汽缸中心线与水平面垂直。

当汽缸数增多时,发动机尺寸和曲轴就成为一个问题。

解决这个问题的办法就是采用V形(汽缸呈两列布置,且两列气缸之间夹角为V形)发动机。

这个设计使发动机尺寸和曲轴都变得更短且更坚硬。

前置发动机纵向安装,既可前轮驱动也可后轮驱动。

后置发动机是将发动机安装在后轮后面。

发动机可横置或纵置,一般情况下为后轮驱动。

1.4电气系统

电气系统为起动机、点火系统、照明灯具、取暖器提供电能。

该电平由一个充电电路维护。

1.4.1充电

充电系统为所有汽车电子元件提供电能。

充电系统主要包括:

蓄电池,交流发电机,电压调节器,即通常是交流发电机上不可或缺的,充电警告或指示灯和金属丝连成一个完整电路。

蓄电池为起动提供电能,然后发动机工作,交流发电机就为所有的电子元件提供电能。

同时也给蓄电池充电即用来使发动机起动。

电压调节器有过充保护作用。

1.4.2起动

起动系统包括:

蓄电池、电缆、起动机、飞轮和换向器。

起动时,有两个动作同时运行,该起动机齿轮与飞轮齿圈啮合,并起动电机,然后运行传输到发动机曲轴。

起动机电机将起动机安装在发动机缸体上并由电池供电。

1.4.3点火

一个基本的点火系统包括:

蓄电池、低压电缆、点火线圈、线圈高压电缆、火花塞电缆和火花塞。

点火系统提供高强度火花使火花塞点燃燃料室里的液体燃料。

火花必须在适当的时候提供,并达到能够使燃料点燃的能量要求。

这些能量从蓄电池和交流发电机获得,点火线圈使电压增高。

该系统有两个电路,主电路或低压电路点燃火花,次电路或高压电路产生高压并将其分配到火花塞上。

复习题

1.列出汽车有那几部分组成。

2.根据车身外形车辆常见类型是什么?

3.向下移动的冰锥增加汽缸容积和新鲜的通过进气阀开启的空气燃料混

合。

2.压缩行程

向上移动的活塞减少了汽缸内体积和压缩的空气燃料混合物。

不久之前,香港贸易发展局是达成共识,火花塞点燃压缩空气燃料的混合物,从而启动了燃烧过程。

更高的压缩比意味着更好的燃油利

用率。

压缩的程度受制于敲限制。

3.做功行程

火花点火后在火花塞点燃了压缩空气燃料的混合物,作为混合的结果温度升高。

在汽缸增加,迫使活塞向下的压力。

活塞转让的权力,通过连杆曲轴。

4.排气行程向上移动的活塞燃烧排出的气体(废气)通过公开排气阀。

在四冲程过完成后又周期重复。

2.1.4引擎的整体力学

这台发动机有数以百计的其它部分。

发动机的主要部件是发动机缸体,发动机头,活塞,连杆,曲轴和阀门。

其他部分一起营造系统。

这些系统是燃油系统,进气系统,点火系统,冷却系统,润滑系统和排气(图2-2)。

这些系统都有一定的作用。

这些系统将在后面详细讨论。

2.2.1发动机缸体

发动机缸体是发动机的基本框架。

所有其他发动机零件要么在其中的位置或固定它。

其所持有的气瓶,水套和油画廊(图2-4)。

发动机缸体还持有曲轴,那拴到块的底部。

还装在凸轮轴块,除却架空凸轮(OHC)发动机。

在大多数汽车,这个部件是由灰铸铁或者一种合金(混合物)灰铁和其它金属如镍或铬。

发动机缸体是铸件。

有些气缸体,特别是在小汽车里的那些,都是由铝做成的。

这种金属比铁轻得多,然而,铁的耐磨性比铝好。

因此,在大多数铝制发动机的气缸活塞,连杆和曲轴

2.3.1曲柄机构和能量

活塞由曲柄机构和气缸,连杆组成。

这些部件通过气体能量推动,从而引起这些

部件产生惯性力。

气能产生的力可以再细分为垂直于竖直平面的力Fn,且作用于汽缸壁,和一个推动连杆的力Fs,这个连杆的力,

从而引起切向力Ft并作用于曲柄机构,这些能量要求在一起产生扭转和法向力Fr。

这气体作用力分为作用角α,支点于连杆的作用角β,和压缩比入:

连杆作用力:

Fs=Fg/cosβ侧向力:

Fn=Fgtanβ

法向力:

Fr=Fgcos(α+β)/cosβ切向力:

Ft=Fgsin(α+β)/cosβ

所以的这些关系代表了一种方法计算各部件的振动.

2.3.2活塞总成

活塞是四个运动周期中一个重要部分,很多活塞都是从铝中提炼出来研制而成的.活塞,通过连杆传递能量来压缩点燃混合气体.

这些能力转化为曲柄的动能.这样,圆形的钢圈装入汽缸,用活塞环来密封整个燃烧室.这个称为活塞环。

这些用来放活塞环的称为凹槽。

一个活塞销放在中间通过一个小孔固定。

活塞销的作用是固定活塞于连杆之间的连接,对活塞销起作用的是活塞销凸台。

活塞本身,它的环和活塞销一起称为活塞总成。

1活塞

为了抵抗高温的燃烧室,活塞必须非常坚固,但是也必须轻便,因为它是在气缸内高速运转而上下运动的,活塞内是空的,在顶部是厚的用来传递高温高压的气体动力,底部温度较低所以做成薄的。

顶部是活塞头或活塞顶,薄部分是裙部,两节之间的凹槽称为环带。

活塞顶可以是平的,凹的,圆顶的或是隐蔽的,在柴油机的燃烧可能形成完全或部分活塞冠,依靠这种方法喷射。

所以活塞采用不同的形状。

2。

活塞环

如图2-9所示,活塞环装进接近活塞顶部的环槽。

简单来说,活塞环是薄的,是圆形的金属片,适合槽活塞顶部的。

现在的发动机,每个活塞有三个活塞环,(老式的发动机有四个甚至五个)。

活塞环装在活塞内表面的凹槽内。

活塞环的外表面紧靠着汽缸壁

活塞环提供了活塞环于汽缸壁之间的密封,也就是说,只有活塞环接触汽缸壁。

顶头两个活塞环是防止气体从汽缸壁漏出的,称为压缩环。

最底下的一个是防止汽油飞溅到缸桶而从间隙进入到燃烧室,所以称为油环。

表面镀铬的铸铁压缩环一般用于汽车的发动机。

镀铬的活塞环提供了光滑,耐磨的表面。

在做功行程,燃烧室对压缩环的压力是非常大的。

原因是他们朝汽缸壁方向挤开,一些高压的气体进入到活塞环,这样使得活塞环表面充分

接触到汽缸壁,燃烧的气体压力使得活塞环底部紧紧地压住活塞凹槽,然而,越高的燃烧的气体压力更加紧紧地把活塞环表面和汽缸壁密封住。

3。

活塞销

活塞销是用来连接活塞于连杆的。

活塞销装入销孔,装入连杆最顶头的小孔。

连杆的顶部应远小于连杆的尾部才能装进曲柄轴颈。

小的底部装进活塞的内底部。

活塞销通过一边装入活塞销,通过小的连杆一端,然后通过活塞的另一边。

这使得连杆稳固地在活塞中间适当的位置。

活塞销是是空心的且是高强度的钢制成的。

很多销的镀铬的使得更加耐磨。

2.3.3连杆

连杆是高强度的钢铸造的,它通过曲柄轴颈传递力和运动从活塞到曲柄销。

连杆小的一头是连接活塞销的。

轴瓦是用软金属制成的,比如青铜,

用来这样合成的。

下级的连杆装进曲柄轴颈。

这称为大头。

这个轴承,是钢背的铅或者是锡壳制成的。

这些是一样被用作主要轴承。

大端的分离切口往往是单个的,所以它足够小可以从燃烧室中取出。

连杆由合金钢铸成。

2.3.4曲轴

曲轴如图2-10所示,连同连杆通过旋转而带动活塞往复运动从而带动汽车行驶。

它是由碳钢和低比例的镍合成的

主要的曲轴轴颈装进汽缸,大端匹配连杆。

在曲轴的后端附加有飞轮,在曲轴的前端有驱动轮对应的

正时齿轮,风扇,冷却水和发电机。

曲轴的摆幅,i,e,是主要的轴颈和大端中心之间的距离。

控制冲程的幅度,冲程是双次进行的,摆动的幅度是活塞从TDC到BDC的距离,反之亦然。

2.3.5汽缸数和点火顺序

单缸的发动机每两次曲轴循环只能提供单一的能量脉冲。

能量只能提供四分之一的时间。

当超过一个汽缸

时它能从曲轴获得流动性的能量。

额外的能量被均匀地隔开遍及两个转数或四冲程的一个周期。

四缸的

一般用于汽车。

为了保持曲轴的平衡设置第一和第四的活塞是在TDC。

第二和第三的活塞是在BDC

每个冲程的间隔是180°,图标的序列显示了各个缸的点火顺序,点火顺序是1-3-4-2,但是这个顺序可以

改变为1-2-4-3,如果安装了另外的凸轮轴。

注意到第四个活塞总是伴随着第一活塞进行的。

当第四活塞

进气阀完全打开时,第一缸的活塞完全关闭,这是用来调节气门间隙的。

表格

2.3.6飞轮

飞轮有碳钢制成,装在曲轴的后端。

同时带动曲轴旋转和离合器。

同时传送给变速器,和启动齿圈包围着

在四个冲程当中只有一个冲程是做功的所以飞轮只有在这个时间带动曲轴

,发动机在这几个不做功的冲程转动。

2.3.7扭转振动平衡

平衡器和减震器是用来保持发动机曲轴正常缓冲的。

比如每个燃烧室燃烧,它能加快曲轴旋转。

轴的惯性它稍稍随后,这样在曲轴上起扭转作用。

连续扭转震动引起的频率不同于发动机的转速和发动机缸数。

减震器减少他们的振动。

减震器主要由轮毂和惯性环组成。

惯性环是结合轮毂通过弹性插入的。

惯性环转动是和曲轴密切相关的在燃烧室内,然而抑制其扭转,并通过曲轴控制犯低级转速。

一些减震器是由两个惯性环和而且是不同的尺寸从而更好地控制其振动。

使用了一段时间后,弹性体会恶化或连接件可以不要。

致使减震器失效或是引起自身振动。

损坏的必须得替换下来。

减震器的设计要结合轮毂的密封轴颈。

在轮毂里密封凹槽,造成石油泄漏。

袖套修理可以恢复减震器如果是在良好的条件下。

轮毂在一定条件下可以维修来调节衬套。

2.6.1汽油

汽油是从原油中提炼石油。

汽油是高度易燃的,这意味着它容易在空气容易燃烧。

汽油容易蒸发。

这种特性被称为波动,是重要的。

但是,它不能太容易挥发,否则将转向油箱内的蒸汽。

管内的燃料,燃料蒸气可能阻止液体汽油流。

这就是所谓的蒸气锁。

在燃料蒸气锁普遍在暴露于高温线泵的进口侧。

汽油的燃烧,随其质量和添加剂比例混合的。

汽油的燃烧方式在室燃烧是很重要的.

增加燃烧室中的燃料混合物点火前的压力,有助于提高发动机功率。

这是通过压缩到一个较小的燃料混合物体积。

高压缩比,不仅有利于推力,而且也给更多的有效的动力。

但更进一步的压缩比起来,敲倾向增加。

辛烷值是对汽油的抗爆性的质量或在燃烧过程中能够抵抗爆炸的认定。

有时被称为爆震敲质量或能力抵御爆炸。

爆轰,有时也被称为敲门,作为燃料的燃烧空气的混合物,由于温度过高,在燃烧室内的压力条件的最后一个部分失控爆炸的定义。

由于爆炸产生的压力波冲击,因此产生敲缸声,燃料燃烧和空气的混合物的扩张,导致丧失权力,局部温度过高,如果足够严重,引擎损害。

有两种常用的汽油辛烷值测定的的方法马达法和研究方法。

两者都使用的实验室相同的类型单缸发动机来做实验,这是一个头部和一个变量来表示敲缸爆震强度装置。

作为燃料使用,发动机压缩比

和空气燃料混合料试验样品进行了调整,试验出爆震强度。

两个主要标准参考燃料,正庚烷和异辛烷,任意分配0和10辛烷值,然后分别是混合产生测试样品相同的爆震强度。

因此百分比异辛烷的混合被认为是测试样品辛烷值,因此,如果相应的参考配方是由15%正庚烷和85%异辛烷,测试样品的额定电机向上或85研究法辛烷值,依据测试的一种方法。

2.6.2

完全燃烧汽油,是在理想条件下汽油在混合气中完全燃烧汽油所需要空气和汽油是15比1。

这意味着1公斤汽油混合15公斤空气。

汽油完全燃烧所需的空气被称为化学正确的混合物。

15:

1的比例适用于汽油,其他燃料有不同的比率.

为了表示更实际,空气燃料混合物提供给空气燃料比(14.7:

1)气缸偏离理论上完全燃烧所需,多余的空气因子R已被选定引擎:

ř=空气质量提供/理论要求

R为1空气质量提供相应数额的理论的必要。

Ř<“1空气或缺乏丰富的混合物。

增加电力的射程R=0.85〜0.95输出结果。

ř>1过量空气或范围稀混合ř=1.05〜1.3.with这个过剩空气系数,降低油耗和减少功率输出发生。

ř>1.3该混合物是如此精简的点火更长发生。

精益失火超限。

ř=0.95〜0.85火花点火发动机开发在5%〜15%空气不足的最大功率。

ř=1.1〜1.2发生在最大的燃油经济性高达20%左右的过剩空气。

为R≈1.0这种过剩空气系数允许与化学计量比空转。

ř=0.85〜0.75良好的转换发生15%〜25%的空气不足。

转型是指从一个给定的负载范围在实践中,过剩空气因素的R=0.9〜1.1已被证明是最实用的。

2.6.3适应工作条件

在一定的操作条件下,燃料需求不同的混合模式于基本注入燃料的数量大于干预必需的.冷启动

在冷启动时,空气燃料混合物的发动机制定的加浓了。

这是由于在起动速度低如果混合物燃油与空气粒子流动速度,并以最小的燃油蒸发和汽缸壁和进气口,在低温下润湿燃料。

为了弥补这些现象,从而促进ID的冷发动机,注入更多的燃料才更容易起动。

1.后启动阶段

在低温起动后,必须加浓的一段短时期的混合物,以补偿较浠混合气的形成和摄入量与燃料缸。

此外,在高扭矩,为更好的油门响应更加丰富的混合物时,加速从闲置的结果。

2.热机

预热阶段遵循冷启动阶段。

该发动机的燃料需要,因为凝结一些仍然在寒冷的汽缸壁的热身阶段额外的燃料。

在低温时,混合物的形成是由于较浓的大型燃料液滴的加入,由于与拟定的发动机在空气中混合燃料效率下降。

其结果是,在进气阀门和进气歧管,只有在较高温度下燃油蒸发浓缩。

上述因素均随温度降低必要的加浓的混合物.

3.加速度

如果油门突然被打开,空气燃料混合物瞬间倾斜过,以及混合浓缩短期在部分负荷运行,实现最大的燃油经济性和排放值是观察的关键因素。

5.全负荷

该引擎提供了在满负荷最大功率,当空气燃料混合比,必须加以丰富,在部分负荷。

这种丰富依赖于发动机转速和提供最大的在整个发动机转速范围内尽可能的扭矩。

这也确保在满负荷运行最佳燃油经济性的数字。

6.怠速

除了发动机的效率,发动机怠速主要决定于闲置的燃料消耗,在发动机冷高摩阻力,必须通过提高空气燃油混合输入克服。

为了实现平稳运行在空闲,空闲速度控制怠速提高。

这也导致了更快速热身的发动机。

闭环闲置速度控制功能可以防止怠速过高。

该混合物的数量相对应维持在有关的负载(如冷发动机,并增加摩擦)怠速所需要的数量。

它还允许一个没有长期闲置的调整不断废气排放值。

闭环闲置速度控制还部分地弥补在发动机老化带来的变化,并确保稳定的发动机整个使用寿命空转。

7.空载

减速时切断燃油降低燃油消耗不仅是长下坡运行和制动过程中,而且在城市交通。

由于没有燃料完全燃烧,减少废气排放。

8.发动机限速

当发动机转速达到预设,教统会抑制燃油喷射脉冲。

9。

的空气燃料混合物在高海拔适应

在高海拔地区的空气密度低就必须更精简的空气燃料混合物。

在高海拔地区,由于较低的空气密度,容积流量的空气流量传感器对应一个较低的空气质量流量测量。

这个错误可以弥补纠正的燃料数量。

过度富集是可以避免的,因此,过多的燃料消耗。

2.6.4化油器供油系统

正如图2-20所示,燃料系统有一个油箱,油管,燃油泵,燃油滤清器和化油器。

这零部件商店汽油,并提供给需要的化油器。

简而言之,油箱储存汽油。

行携带的燃料从油箱的燃料化油器。

移动汽油燃油泵从油箱的燃料,并通过线化油器。

燃料过滤器除去杂质的汽油。

然后,化油器发送燃料的空气和汽油的混合物-进入燃烧室。

1。

燃油泵

大多数车今天使用一个机械式燃油泵。

这种燃料泵出了汽油,并通过油管向化油器或喷射系统。

在大多数汽车,泵安装在发动机缸体。

有些汽车电动燃油泵有一个。

该泵安装在皮卡与燃料和燃料轨,发送单元油箱。

对机械燃油泵操作取决于对凸轮轴叶。

作者:

爱在旋转移动泵摇臂。

泵内,可以灵活的隔膜通过膜片弹簧摇臂,拉杆和链接。

如图所示,燃油泵也有一个入口和燃料出口。

由于凸轮轴上的旋转叶,横膈膜上下移动内部的引擎。

隔膜的吸向下运动从进入泵油箱。

隔膜向上运动推到了化油器,从泵的燃料。

2。

化油器

化油器提供燃料比例的空气量流经喉管。

当你在加速器踏板时,扩大开放节流阀吸引更多的空气通过化油器。

化油器提供这取决于许多因素更丰富或更精简的混合物:

发动机转速,负荷,温度,节气门位置。

为了满足复杂的要求,一化油器是一个非常复杂的设备与许多内部通道及零部件.

(1)喉管

汽车化油器的设计是由喉管。

喉管简直是气道狭窄的部分。

空气通过化油器的喉咙,因为它移动的速度通过这个狭窄通道的旅行。

通过建立合资企业增加的空气速度在喷嘴打开一个低压区。

推动在一个大气压下水库内燃料的化油器浮子室称为。

燃料是强行通过一根管子到空气流。

(2)浮子室

浮子室是一个储存和供应燃料的化油器水库。

由于发动机使用的燃料,它会自动浮子室补充。

浮动室内乐作品在同一作为一个抽水马桶水箱控股的基本原则。

阿浮有赖于在水库燃料的顶部。

作为燃料使用时,浮球液位下降。

当浮动滴,一针阀打开。

开放式针形阀允许从燃料的燃料泵入化油器的浮子室流。

当商会是满了,针形阀是向上推,并关闭燃油进口..

(3)测量燃油浮子室之间的压差和造成的燃料流。

然而,为了维持适当的空气燃料比,化油器必须仅提供适量的燃料。

为此,主放电管有一个小孔(称为喷射或主射流)。

这允许燃料进入气流。

在大多数情况下,这个小口子浮子室是在主放油管的末端。

在那里,它的体积小燃油流量限制。

(4)需要冷启动安排切断阀通过一个手段扼杀供气提供了丰富的混合物(约8:

1),并提供了一个轻松的粒子蒸发足够的引擎。

(5)慢速贯穿化油器的空气量过小的时候,发动机只运行缓慢产生非常小的扼流圈抑郁症。

这意

味着太少将提供燃料和发动机将停止。

缓慢运行的系统已经在这个区域里存在着抑郁症的高当发动机空转的电源插座。

调节螺钉控制系统运行缓慢,一个螺丝设置空转速度运行缓慢等使混合物是让发动机转速平稳。

(6)油门机制机制的油门控制空气燃料混合物流动。

油门有几个,包括油门轴和节流板的一部分。

通过打开和关闭,节气门控制的空气进入发动机燃料混合物流动。

在诸如开放更多的空气流动,少的板关闭的气流。

这些变化也气流控制汽油流。

增加气流意味着更大的压力下降,从而更多的燃料流。

气流减少意味着减少压降和流量较少的燃料。

该议案的节流轴转动油门板。

油门轴电缆连接到油门,反过来,连接到车内的油门踏板。

司机控制空气燃料混合物踏板流动。

(2.6.5莫特郎尼克点火和燃油喷射系统

化油器将准确的空气燃料混合气发送到发动机。

然而,并非所有的汽车都有化油器。

许多现代汽车是用燃油喷射系统(图2-22)。

燃油喷射系统与化油器式有许多优势。

例如,它们能提供更多的精确控制。

它们能够更好地匹配空燃比在不断变化的发动机状态。

它们还提供更好的经济性和排放控制。

此外,燃油喷射系统不需要化油器多余的那部分。

该系统是一个莫特郎尼克发动机管理系统,包括控制单元(ECU),它执行至少两个基本功能点火和喷油,但可能包含其他子系统需要改进的发动机控制

1。

测量值的检测

气缸内的燃烧过程不仅受混合气和空气燃料比的影响,而且还受点火提前点火和点火火花的能源影响。

一个优化的引擎控制,因此必须控制在整个喷射时刻的空气燃料比RA(即喷入的燃油量),以及点火提前角α和持续角B。

影响燃烧过程中的主要参数检测为测量值和一起处理瞬间发动机运行工况点火和喷射的最佳时机的计算。

2。

工作变量/传感器

发动机转速和负荷是主要的工作变量。

由于特定的点火提前角和精确的喷射时间对应于每个发动机的转速/负载地图点,重要的是所有的变量,其中涉及到同一个点都在相同的速度/负载面积计算。

这不仅是可能的,如果点火提前和喷射时间以同样的速度和负载值(发动机转速检测只有一次使用相同的传感器)计算。

这就避免了统计误差,可导致不同的负载传感器设备公差,例如,。

而一个略有杆负荷范围不同的分配限制敲到发动机爆震的易感性增加。

清除点火时间角和注射时间分配是由莫特郎尼克系统提供动力,即使在发动机运行条件下,

3。

莫特郎尼克系统

该莫特郎尼克系统包括一系列子系统,两个基本子系统点火和喷油。

综合后的系统更加灵活,可实现比相应的各个系统的功能更多。

莫特郎尼克系统的重要特点是其作为一个最子功能所需的大量可自由编程实现地图。

废气再循环(EGR)的功能至今尚未在欧洲使用,因此提供一种替代系统的唯一。

控制系统的lambda只能算是今天,如果配合使用为减少尾统开环控制功能以及一个扩展的系统与闭环功能(结合敲和lambda控制)在管理系统(气排放的原因自适应预控。

该爆震控制或者是连接到莫特郎尼克系统通过定义的接口,或集成到系统。

这个子系统结合物理学的观点来看是有道理的:

它使一个基本的系点火和燃油喷射)。

怠速控制的实现是通过点火系统和燃油喷射系统数据的采集,并且是整个系统控制碳罐和凸轮轴通风的一部分。

如今的微机控制系统需要执行对控制单元的自诊断,以及整个系统在一定的程度。

未来的莫特郎尼克系统因此将含有诊断功能。

发动机管理系统至少应包括那些函数描述。

其他功能的增加是可行的,如果他们可以不为一个额外的输入和输出的数量得到执行。

系统,使用输入和输出信号由莫特郎尼克系统使用不同的不统一,而是通过与系统连接的接口莫特郎尼克。

这种系统的典型例子是传输控制系统和牵引力控制系统,进入点火和喷油系统,通过相应的接口。

4。

系统配置

图2-22是一个典型的莫特郎尼克系统,它显示了燃料电路、负荷和温度数据的采集。

该系统的数据采集不包括冷启动阀或暖机开关,其功能是由控制单元来执行的。

怠速阀取代了辅助空气装置。

除了点火线圈,高压电分火电器通常是直接安装在凸轮轴。

相对于传统的分电器,高压电分火器的功能是将高压电分配到各缸。

电子控制单元以最佳点火时刻确定发动机转速和负荷。

该系统的一个基本特征就是检测发动机曲轴的转速。

电感式传感器通过检测其磁通量是由齿圈引起曲轴角速度。

参考标记检测到一个相同的电感式传感器。

这个信号是用来确定点火提前角。

在某些情况下,只有一个电感式传感器,一个特殊的齿盘组合确定发动机转速和角度都引用标记。

5。

控制单元(ECU)

对ECU通过检测传感器的数量在很短的时间间隔(毫秒)的发动机瞬时条件。

由传感器输出的信号反馈到ECU的输入电路删除其中的任何信号干扰和信号转换成一个统一的电压范围。

一个A/D转换器,然后将这些信号转换到他们的信号等值。

然后,此信息由微机处理,产生输出信号。

输出级放大输出低的微机由执行机构所需的杠杆力杠杆。

所有的程序和地图是在半导体存储器的居民。

数字信号电平或元件容差的波动。

数字的准确性是由字长,石英时钟频率稳定性和用于加工的算法。

模拟精度取决于稳定性和参考电压的精度,并在输入电路中使用的组件。

程序配置必须允许极端实时发动机的要求。

两个点火脉冲之间的6缸发动机的时间间隔大约只有以最大速度3毫秒。

所有重要的计算必须在此期间进行。

除了曲轴同步控制处理,ECU的计算时间也有同步的事件。

职能,对双方都必须等待,如果发生中断。

2.6.6汽油直喷(GDI)的

传统的汽油发动机被设计为使用电子燃油喷射系统,取代了传统的机械汽化系统。

多点喷射(MPI)的,那里的燃料是通过每一个进气口注入,是目前使用最广泛的系统之一。

虽然MPI提供的响应及燃烧质量大幅提高,它仍然是有限的,由于燃料和空气混合进入气缸前。

为了进一步提高响应时间和燃烧效率,同时降低油耗,增加产量,系统可直接使用注射。

汽油直喷发动机是发动机的设计能够直接注入汽油在进入气缸柴油直喷发动机(图2-23)

直接注射的目的是让更多的控制和精确度,更好的燃

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2