华中农业大学生物化学考研试题库附答案核酸化学.docx

上传人:b****0 文档编号:17003142 上传时间:2023-07-21 格式:DOCX 页数:40 大小:90.70KB
下载 相关 举报
华中农业大学生物化学考研试题库附答案核酸化学.docx_第1页
第1页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第2页
第2页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第3页
第3页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第4页
第4页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第5页
第5页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第6页
第6页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第7页
第7页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第8页
第8页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第9页
第9页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第10页
第10页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第11页
第11页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第12页
第12页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第13页
第13页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第14页
第14页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第15页
第15页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第16页
第16页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第17页
第17页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第18页
第18页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第19页
第19页 / 共40页
华中农业大学生物化学考研试题库附答案核酸化学.docx_第20页
第20页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

华中农业大学生物化学考研试题库附答案核酸化学.docx

《华中农业大学生物化学考研试题库附答案核酸化学.docx》由会员分享,可在线阅读,更多相关《华中农业大学生物化学考研试题库附答案核酸化学.docx(40页珍藏版)》请在冰点文库上搜索。

华中农业大学生物化学考研试题库附答案核酸化学.docx

华中农业大学生物化学考研试题库附答案核酸化学

第5章核酸化学

一、学大纲基本要求

DNA、RNA的结构和性质以及研究技术。

核酸的化学结构,碱基、核苷、核苷酸,DNA的结构,DNA的一级结构,DNA的二级结构,DNA结构的不均一性和多形性,环状DNA,染色体的结构。

RNA的结构,RNA的类型和结构特点,tRNA的结构和功能,mRNA的结构和功能,rRNA的结构和功能。

核酸的性质,解离性质,水解性质,光吸收性质,沉降特性,变性、复性及杂交。

核酸研究技术,核酸的分离纯化,限制性核酸内切酶,DNA物理图谱,分子杂交,DNA序列分析,DNA的化学合成,DNA聚合酶链式反应—PCR。

、本章知识要点

(一)核酸的化学组成

1.元素组成

核酸分子主要由碳、氢、氧、氮和磷等元素组成。

与蛋白质相比较,核酸的元素组成中一般不含有硫,而磷的含量较为稳定,占核酸9%~10%。

可通过测定磷含量来估计样品中核酸的含量。

2.物质组成

核酸在核酸酶的作用下水解为核苷酸,核苷酸完全水解可释放出等摩尔量的含N碱(碱基Base)、戊糖和磷酸。

因此构成核酸的物质成分有三类:

包括磷酸、戊糖和碱基。

戊糖可分为核糖和脱氧核糖,碱基又分为嘌呤碱和嘧啶碱两类,DNA中的戊糖和碱基与RNA有所不同。

DNA分子中的戊糖是β-D-2-脱氧核糖,RNA中的戊糖是β-D-核糖。

DNA分子中存在的碱基主要有腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。

RNA分子中除含有A,G,C外,还含有尿嘧啶(U),而不含有T。

因此,DNA和RNA的碱基组成上,嘧啶的组成有所不同。

在DNA和RNA分子中尚含有少量的不常见的其他碱基,称为稀有碱基,它们大多数是常见碱基的甲基化衍生物。

3.核酸的基本单位——核苷酸

组成DNA的核苷酸(nucleotide)称为脱氧核糖核苷酸,组成RNA的核苷酸称为核糖核苷酸。

核苷酸则是由磷酸、戊糖、碱基组成。

碱基和核糖或脱氧核糖之间脱水通过糖苷键(glycosidicbond)缩合形成核苷或脱氧核苷,戊糖的第1位碳原子与嘌呤的第9位氮原子相连构成l,9—糖苷键,而与嘧啶的第l位氮原子相连构成1,1-糖苷键。

核苷中戊糖的游离羟基与磷酸之间脱水通过磷酯键缩合生成核苷酸。

因核糖核苷的糖基在2',3',5',位上均有游离的羟基,故能分别形成2'-3'-或5'-核糖核苷酸,而脱氧核糖核苷的糖基上只有3',5'两个游离的羟基,所以只能形成3'-或5'-脱氧核糖核苷酸。

生物体内游离存在的多是5'-核苷酸。

5'-核苷酸的磷酸基上往往可以再接一分子或两分子磷酸,生成二磷酸或三磷酸核糖核苷(NDP或NTP)和二磷酸或三磷酸脱氧核糖核苷(dNDP或dNTP)。

四种NTP和四种dNTP分别是合成RNA和DNA的原料。

在生物体内还有一些游离的核苷酸及其衍生物,如供能物质ATP、多种激素的第二信使cAMP,cGMP等,在生物代谢过程中起重要作用。

4.核苷酸的连接方式

核苷酸之间靠3',5'-磷酸二酯键彼此连接而组成多核苷酸链。

即核苷酸戊糖的第5位碳上的磷酸基与另一个核苷酸戊糖的第3位碳上的羟基脱水缩合形成酯键。

因一个磷酸基形成两个酯键,故称为磷酸二酯键。

多核苷酸链是核酸的基本结构形式,由四种核糖核苷酸(NMP)通过磷酸二酯键连接而成的多核苷酸链为RNA链。

由四种脱氧核糖核苷酸(dNMP)通过磷酸二酯键连接而成的多核苷酸链为DNA链。

DNA链和RNA链都具有两个游离末端,其核苷酸残基中戊糖的5位碳上带有游离的磷酸基的一端称为5′末端,戊糖的3位碳上带有游离的羟基的一端称为3′末端。

多核苷酸链是以糖—磷酸构成骨架,碱基在骨架内侧。

在书写核苷酸链核苷酸残基(或碱基)排列顺序时,则从5'→3'方向(由左至右)描述。

(二)DNA的分子结构

核酸的分子结构大体分为三级,DNA和RNA在分子的构象和碱基组成上有着显著的差异。

1.DNA的一级结构

DNA的一级结构是指多脱氧核糖核苷酸链中核苷酸残基的排列顺序,也就是核苷酸链中碱基的排列顺序。

DNA对遗传信息的携带和传递是依靠核苷酸中的碱基排列顺序变化而实现的。

自然界基因的长度在几十至几万个碱基之间,由于碱基的排列方式不同,因而提供的DNA编码能力几乎是无限的。

2.DNA的二级结构

DNA的二级结构是典型的双螺旋(doublehelix)结构。

Watson-Crick双螺旋结构模型(B-DNA)的特征是:

(1)反向平行双链:

由两条长度相同、互为反向平行的脱氧多核苷酸链组成。

碱基位于两条脱氧核糖和磷酸形成的长链骨架的内侧。

(2)碱基互补配对:

两条链通过碱基间形成的氢键相连,具有严格的碱基配对关系。

始终是A与T配对、G与C配对。

A,T之间形成二个氢键,G,C之间形成三个氢键。

碱基对(bp)平面垂直于螺旋轴。

(3)右手双螺旋:

两条反向平行的脱氧核糖核酸链围饶同一中心轴盘饶成右手螺旋。

每10个bp为一周,螺距为3.4nm,螺旋直径为2.0nm,相邻的bp平面沿轴旋转36°,上升0.34nm。

双螺旋表面具有深沟和浅沟(大沟和小沟)。

深沟是蛋白质识别DNA碱基序列的基础。

(4)维持双螺旋结构稳定的力量:

bp之间的氢键维持双螺旋结构的横向稳定,碱基平面间的疏水性堆积力维持纵向稳定。

DNA的二级结构尚存在Z-DNA,A-DNA等螺旋形式。

在DNA分子中碱基组成有着显著的特点:

既嘌呤碱的数目与嘧啶碱的数目相等。

A=T,G=C,A+G=C+T:

不同种生物细胞中的DNA,碱基组成不同:

同一个体不同组织器官中DNA的碱基组成相同:

DNA分子的碱基组成不受年龄、营养状况的影响。

3.DNA的三级结构

DNA的三级结构是在二级结构基础上进一步盘饶形成的超螺旋结构。

如真核细胞DNA的双链缠饶在组蛋白上构成核小体。

参与核小体形成的组蛋白包括H1,H2A,H2B,H3,H4五种亚基,一个完整的核小体由核心颗粒及连接区组成。

每两分子H2A,H2B,H3,H4构成八聚体与DNA形成核小体的核心颗粒,H1亚基形成核小体的连接区。

DNA分子围饶核心颗粒盘饶1圈大约140bp,连接区DNA长度约为60bp,完整的核小体DNA约含200个碱基对,它是染色体的基本单位。

由许多核小体形成的串珠状结构再进一步卷曲呈螺线管状排列,即为染色质纤维,染色质纤维再经几次卷曲才能形成染色单体。

超螺旋结构的形成使细胞核内DNA的长度压缩了近一万倍。

(三)RNA的分子结构

1.RNA的类型和结构特点

是指多核苷酸链中核苷酸残基的排列顺序,RNA的结构一般是以一条单链形式存在,单链折叠盘饶时存在着一些能够互补配对的核苷酸区,形成局部双螺旋结构。

碱基间也有互补配对关系,A对U,G对C,A,U之间形成两个氢键,G,C之间形成三个氢键。

但是,在整个RNA分子中嘌呤碱和嘧啶碱之间没有严格的相等关系。

单链内不能配对的部分则被排斥在双链外,形成环状突起。

这就是RNA的二级结构。

细胞内含有三种主要的RNA即mRNA,rRNA,tRNA。

2.mRNA的结构和功能

mRNA可从DNA转录遗传信息,并作为指导蛋白质合成的模版。

mRNA含量最少,仅占RNA含量的3%。

但作为不同蛋白质合成模版的mRNA种类却最多。

其一级结构差异很大,核苷酸数变动范围在500~6000bp之间,其分子为线形单链结构。

成熟的mRNA来自于其前体核不均一RNA(hnRNA)的剪接而成。

5'-末端有一个7-甲基鸟苷三磷酸(m7-GTP)的“帽”,3'-末端有多聚腺苷酸(Po1yA)的“尾”,该尾由30~200个腺苷酸聚合而成。

其帽和尾是在转录后加上去的。

中间部位为编码区,从5'→3'每三个相连的碱基为一组密码,称为“三联体密码子”。

组成mRNA的碱基共四种,每3个组成一组密码可组成64组。

其中6l组为有意义密码子,分别代表20种不同的氨基酸。

3.tRNA的结构和功能

tRNA的功能是在细胞蛋白质合成过程中作为各种氨基酸的载体,并将其转呈给mRNA。

其分子最小,由60—90个核苷酸组成,约占RNA总量的16%。

其分子组成特点是含有较多的稀有碱基和稀有核苷,包括双氢尿密啶(DHU)、假尿苷(ψ)和甲基化的嘌呤(mG,mA)。

其二级结构呈三叶草型。

其主要功能部位有二个,一个是3′-末端的-CCA-OH结构,起特异结合氨基酸的作用,称为“氨基酸臂”。

另一个是反密码环,环上有三联的“反密码子”,它与mRNA上的密码子反向互补。

于是,由tRNA携带的氨基酸可被转运到与密码子相对应的部位上。

所以,tRNA尚有阅读mRNA密码子的功能。

tRNA的三级结构为倒“L”型,是天然状态下的构象。

4.rRNA的结构和功能

rRNA是细胞内含量最多的RNA,约占RNA总量的80%。

rRNA不单独存在,它与蛋白质结合为核糖体(核蛋白体)。

核糖体由大、小两个亚基组成,在原核和真核生物细胞内,构成大、小亚基的rRNA的种类和数目各不相同。

核糖体存在于粗面内质网和胞浆中。

(四)核酸的理化性质

l.一般理化性质

由于DNA和RNA的多核苷酸链上即有酸性的磷酸基团,又有碱基上的碱性基团。

因此,它也是两性电解质。

在一定pH溶液中可带某种电荷,可用电泳方法将其分离。

核酸通常显酸性,易与金属离子生成盐。

可加入乙醇或异丙醇使其沉淀析出。

核酸是生物大分子,具有大分子的一般特性。

如易沉淀、因呈线性结构,具有一定的粘度。

因核酸分子中的碱基结构中也存在着共轭双键,所以核酸具有紫外吸收特性。

核酸溶液在260nm波长处具有最大光吸收,该性质可用于核酸的定量分析。

2.DNA的变性、复性和分子杂交

DNA的变性是指在理化因素作用下,DNA分子中的氢键断裂,碱基堆积力遭到破坏,双螺旋结构解体,双链分开形成单链的过程。

DNA变性后表现为粘度降低、紫外吸收增加(增色效应)。

在实验室使DNA变性的最常用方法是加热。

加热时DNA双链逐渐发生解链,紫外吸收能力逐渐增加。

当紫外吸收达到最大值一半时的溶液温度称为DNA的变性温度(Tm),亦称解链温度或熔解温度。

DNATm值的大小与分子中的G—C配对含量多少及分子的长度有关。

G,C含量越高Tm值越大,DNA分子越长Tm值也越大。

所谓DNA的复性是指变性分开的两条单链,按照碱基互补配对原则重新形成双股螺旋的过程。

通常采用降温的方法使其复性,所以DNA的复性亦称为“退火”。

退火温度一般比Tm值低25℃。

而分子杂交是指不同来源的核酸单链合并在一起,形成杂化双链的过程。

只要这些核酸链含有可以形成碱基互补配对的序列,就可以形成部分双链。

核酸分子杂交在分子生物学研究中是一项应用较多的重要实验技术。

(五)核酸研究技术

1.核酸的分离纯化

(1)分离DNA最重要的方法有3个:

一是用盐抽提,用苯酚和氯仿除去蛋白质。

二是SDS存在下保温消化细胞悬液,再用苯酚和氯仿去蛋白,用RNase除去少量的RNA。

三是用氯化铯密度梯度离心法分离纯化DNA。

(2)制备RNA要防止RNase的降解。

①器皿要高温处理或用DEPC除去RNase。

②破碎细胞的同是使蛋白质变性。

③RNA反应体系中加入RNase抑制剂(RNasin)。

常用的RNA分离方法有两种,用酸性胍盐/苯酚/氯仿抽提。

其二,用胍盐/氯化铯密度梯度离心。

分离Poly(A)mRNA可用寡聚(dT)n亲和层析法。

核酸的测定常用紫外分光光度法、定磷法和定糖法。

测定生物样品中的核酸需要预先处理,定量提取出核酸或其成分再作测定。

(3)核酸的超速离心是研究核酸的重要方法。

常用的是密度梯度离心法。

可用来测定核酸密度、测定G十C含量和研究核酸的构象。

(4)核酸的凝胶电泳是最常用的核酸研究方法。

通常用的是琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳。

2.限制性核酸内切酶

(1)

限制修饰系统,限制性内切酶往往与一种甲基化酶同时成对存在,构成一个限制修饰系统,甲基化酶使细菌自身的DNA带上标志,限制性内切酶专门用于降解入侵的外源DNA。

(2)限制酶的命名:

E.coRI,第一位:

属名E(大写),第二、三位:

种名的头两个字母小写co,第四位:

菌株R,第五位:

从该细菌中分离出来的这一类酶的编号。

(3)修饰一限制酶主要有三类,①类型I酶为多亚基双功能酶,对DNA甲基化和切割由同一酶完成。

该酶共有二种亚基,S亚基为识别亚基,识别位点分为两部分序列,中间隔以一定长度的任意碱基对。

R亚基具有限制酶活性,可在远离识别位点至少1kb以上处随机进行切割。

由于切割是随机的,这类酶在基因操作中并无实际用途。

②类型Ⅱ酶的修饰和限制活性由分开的两个酶来完成。

通常这类甲基化酶由一条多肽链组成,限制酶由两条相同的多肽链组成。

类型Ⅱ酶的识别序列常为4—6bp的回文序列。

甲基化酶能使半甲基化DNA,识别位点上特定碱基甲基化,甲基化酶每次作用只引入一个甲基。

DNA两条链都已甲基化时无反应,两条链都末甲基化则被限制酶降解。

限制酶的切割位点或在识别位点内,或靠近识别位点。

切割DNA或是将两条链对应酯键切开,形成平末端,或是将两条链交错切开,形成单链突出的末端。

切开的两末端单链彼此互补,可以配对,故称为黏性末端。

由不同微生物分离得到的限制酶。

如果识别位点和切割位点完全一样,称为同裂酶。

如仅仅是黏性末端突出的单链相同,称为同尾酶。

③类型Ⅲ酶为两个亚基的双功能酶,M亚基负责识别与修饰,R亚基负责切割,其修饰与切割都需要ATP提供能量,切割位点在识别位点下游24~26bp处。

3.DNA物理图谱

在研究某一种DNA时,弄清该DNA分子有哪些限制酶切位点是很重要的。

建立物理图谱是进一步分析此DNA的基础。

限制酶图谱的制作十分简单。

将纯化的DNA(往往用分子克隆法,从单一克隆中扩增而制备),用不同的限制酶切割,进行凝胶电泳分析。

根据测量凝胶电泳图上各酶切片段的长度,就可以决定各切点的位置。

4.分子杂交

在DNA复性时,如把不同DNA分子或DNA与RNA分子放在同一溶液中,只要这些核酸单链分子之间存在一定程度的碱基配对关系,就可在不同分子间形成杂化双链,这种现象称核酸分子杂交。

(1)Southernblotting将限制性内切酶酶切电泳后的DNA转移至NC膜上,再与核酸探针杂交的技术。

SouthernBlotting可用于DNA之间同源性分析,确定特异性DNA序列的大小和基因定位。

(2)Northernblotting将电泳后的RNA转移至NC膜上,再与核酸探针杂交的技术。

研究对象是RNA。

(3)Westernblotting将聚丙烯酰胺凝胶电泳后的蛋白质转移至NC膜上,再与另一标记蛋白质分子(如抗体)杂交的技术。

抗原与抗体的杂交,研究基因表达产物的常用技术。

5.DNA序列分析

(1)化学法化学法的原理是用特异的化学试剂修饰DNA分子中的不同碱基,然后用哌啶切断多核苷酸链。

所以,用四组不同的特异反应,就可以将末端(3’或5’端)用放射性标记的DNA分子形成不同长度的寡核苷酸。

用凝胶电泳将这些不同长度的寡核苷酸分离开来,即可读出所测定的DNA的序列。

(2)双脱氧法(dideoxymethod)也称酶法(enzymemethod),是由Sanger于1977年建立的。

其原理是利用2’,3’-双脱氧三磷酸核苷(2’,3’-ddNTP)来终止DNA的复制反应。

大肠杆菌DNA聚合酶(或K1enow片段)在DNA复制过程中催化多核苷酸链的延伸,单核苷酸是接在延伸链的3’-0H上。

所以,如果掺入的底物中有2’,3’-ddNTP,延伸反应即告终止。

这样设计四组反应,每组反应中都含有正常的四种脱氧核苷酸dNTP(其中一种为32P标记的),单链DNA模板(即待测的DNA)和引物(Primer),各组反应还加入一种2’,3’-ddNlP。

反应结果,在加入2’,3’-ddATP的反应中,凡碰到需要dATP的时候,如果掺入的不是dATP,而是2’,3’-ddATP时,链延伸反应即告终止。

用凝胶电泳分析这四组反应的产物,即可从放射自显影上读出DNA的序列。

(3)RNA的序列分析①酶裂解法,从胰脏提取的RnaseA水解嘧啶核苷酸的键,所产生寡核苷酸的3’端均为嘧啶核苷酸。

米曲霉中提取的RNaseTl特异水解鸟苷酸与相邻核苷酸的键。

黑粉菌中提取的RNaseU2在一定条件下特异水解腺苷酸的键。

从多头粘菌中提取的RNasePhyI水解A、G、U3种核苷酸,但不水解胞苷酸。

利用上述4种酶可测定RNA的序列。

②用化学试剂裂解RNA基本原理与DNA化学测序法相似。

③逆转录成cDNA即可用DNA测序法来测定序列。

6.DNA的化学合成

DNA的化学合成已有自动化仪器来完成,目前采用的是亚磷酸三酯法。

7.DNA聚合酶链式反应

DNA的聚合酶铤反应(PCR)是一种快速简便的体外DNA扩增技术,能在很短时间内,将几个拷贝的DNA放大上百万倍。

是应用最广泛的生物技术。

(1)它的基本步骤为:

①设计一对引物。

②优化反应体系。

③选择热循环温度。

④鉴定扩增产物。

(2)工作原理:

以拟扩增的DNA分子为模板,以一对分别与模板5’末端和3’末端相互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按半保留复制的机制沿模板链延伸直至完成新的DNA合成,重复这一过程,使目的DNA片段得到大量扩增。

(3)用途目的基因的克隆、基因的体外突变、DNA微量分析等。

、重点、难点

重点:

本章应重点掌握核酸的分子组成、核酸的分子结构、特别是DNA的二级结构特点以及三种RNA的结构特点及功能,DNA的变性、复性及杂交的概念及意义。

为基因信息的传递各章节的学习打好基础。

还应该了解核酸的分离纯化,限制性核酸内切酶及DNA物理图谱,分子杂交,DNA序列分析,DNA聚合酶链式反应(PCR)等现代的核酸研究技术。

难点:

DNA的二级结构特点以及三种RNA的结构特点及功能,DNA序列分析和DNA聚合酶链式反应(PCR)。

、典型例题解析

例题5-1:

DNA热变性有何特点?

Tm值表示什么?

解:

将DNA的稀盐溶液加热到70-100℃几分钟后,双螺旋结构即发生破坏,氢键断裂,两条链彼此分开,形成无规则线团状,此过程就是DNA的热变性。

DNA的热变性有很多特点如:

变性温度范围很窄;260nm处的紫外吸收增加;粘度下降;生物活性丧失;比旋度下降;酸碱滴定曲线改变。

Tm值代表核酸的变性温度(熔解温度、熔点)。

在数值上等于DNA变性时紫外吸收达到最大值半数时所对应的温度。

例题5-2:

简述DNA双螺旋的结构特点。

解:

DNA分子为两条多核苷酸链以相同的螺旋轴为中心,盘绕成右旋、反向平行的双螺旋;以磷酸和戊糖组成的骨架位于螺旋外侧,碱基位于螺旋内部,并且按照碱基互补的原则,碱基之间通过氢键形成碱基对,A-T间形成二个氢键、G-C间形成三个氢键;双螺旋的直径是2nm,每10个碱基对旋转一周,螺距为3.4nm,所有的碱基平面都与中心轴垂直;维持双螺旋的作用力是碱基堆积力和氢键。

例题5-3:

在pH7.0,0.165mol/LNaCI条件下,测得某一DNA样品的Tm为89.3℃。

求出四种碱基百分组成。

解:

因为(G+C)%=(Tm-69.3)×2.44×%

=(89.3-69.3)×2.44×%

=48.8%

G=C=24.4%

而(A+T)%=1-48.8%=51.2%

A=T=25.6%

例题5-4:

有一噬菌体DNA长17μM,问它含有多少对碱基?

螺旋数是多少?

解:

因为17μm=17000nm

所以此核酸分子的碱基对数:

17000/0.34=5×104(对)

螺旋数:

5×104/10=5×103(圈)

例题5-5:

将核酸完全水解后可得到哪些组分?

DNA与RNA的水解产物有何不同?

解:

将核酸完全水解后可以得到:

磷酸、戊糖、碱基三种组分。

DNA水解后得到的戊糖是2-脱氨核糖,碱基有胸腺嘧啶(T)、胞嘧啶(C)、腺嘌呤(A)、鸟嘌呤(G)。

RNA水解后得到的戊糖是核糖,碱基有尿嘧啶(U)、胞嘧啶(C)、腺嘌呤(A)、鸟嘌呤(G)。

例题5-6:

DNA与RNA的一级结构有何异同?

解:

DNA的一级结构中组成成分为脱氧核糖核苷酸,核苷酸残基的数目由几千至几千万个;而RNA的组成成分是核糖核苷酸,核苷酸残基的数目仅有几十到几千个。

另外在DNA分子中A=T,G=C;而在RNA分子中A≠U,G≠C。

二者的相同点在于:

它们都是以单核苷酸作为基本组成单位,核苷酸残基之间都是由3,5—磷酸二酯键相连接的。

例题5-7:

简述tRNA二级结构的组成特点及其每一部分的功能。

解:

tRNA的二级结构为三叶草结构。

其结构特征为:

①tRNA的一级结构由四臂、四环组成。

已配对的片断称为臂,未配对的片断称为环。

②叶柄是氨基酸臂。

其上含有CCAOH3',此结构是接受氨基酸的位置。

③氨基酸臂对面是反密码子环。

在它的中部含有三个相邻碱基组成的反密码子,反密码子可以与mRNA上的密码子相互识别。

④左环是二氢尿嘧啶(DHU环),它与氨酰-tRNA合成酶的结合有关。

⑤右环是假尿嘧啶环(TψCG环),它与核糖体的结合有关。

⑥在反密码子环与假尿嘧啶环之间的是可变环,它的大小决定着tRNA的分子大小。

例题5-8:

一个单链DNA与一个单链RNA分子量相同,你如何将它们区分开?

解:

①用专一性的RNA酶与DNA酶分别对两者进行水解。

②用碱水解。

RNA能够被水解,而DNA不被水解。

③进行颜色反应。

二苯胺试剂可以使DNA变成蓝色;苔黑酚(地衣酚)试剂能使RNA变成绿色。

④用酸水解后,进行单核苷酸的分析(层析法或电泳法),含有U的是RNA,含有T的是DNA。

例题5-9:

为什么大多数核酸酶受金属螯合剂EDTA的抑制?

解:

.绝大多数核酸酶在发挥作用时需要Mg2+的参与。

当加入金属螯合剂EDTA后,Mg2+将被螯合,从而抑制了核酸酶的活性。

例题5-10:

计算下列碱基的浓度:

(以摩尔/升表示,溶液的pH为7.0,按260nm处的摩尔消光系数:

G=7.2×103;T=7.4×103计算)

①鸟嘌呤溶液的A260=0.325

②胸腺嘧啶溶液的A260=0.090

解:

由公式:

A260=εCL公式中A260为光密度(嘌呤碱及嘧啶碱对紫外吸收的最大吸收峰是260nm)

ε为260nm处的碱基摩尔消光系数

C为每升溶液中碱基的摩尔数

L为比色杯内径的厚度

已知:

A260(G)=0.325ε(G)=7.2×103

A260(T)=0.090ε(T)=7.4×103

L=lcm

所以C=A260/εL

C(G)=0.325/(7.2×103×1)=4.5×10-5(mol/L)

C(T)=0.090/(7.4×103×1)=1.2×10-5(mol/L)

例题5-11:

如果人体有10TM个细胞,每个体细胞的DNA量为6.4×109个碱基对。

试计算人体DNA的总长度是多少?

这个长度与太阳—地球之间的距离(2.2×109公里)相比如何?

解:

每个体细胞内DNA的总长度为:

6.4×109×0.34nm=2.176×109nm=2.176m

人体内所有体细胞内的DNA的总长度:

2.176×1014m=2.176×1011km

这个长度与太阳一地球之间的距离相比为:

2.176×1011/2.2×109=0.99×102=99(倍)

例题5-12:

说明在pH2.5、pH3.5、pH6、pH8、pHll.4时,四种核苷酸(AMP、GMP、CMP、UMP)所带的电荷数(或所带电荷数多少的比较),并回答下列问题:

①电泳分离四种核苷酸时,缓冲液应取哪个pH比较合适?

此时它们是向正极还是向负极移动?

移动的快慢顺序如何?

②当要把上述四种核苷酸吸附于阴离子交换树脂柱上时,应调到什么pH值?

③如果用洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离时,洗脱液又应调到什么pH值?

这四

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2