结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx

上传人:b****2 文档编号:17022203 上传时间:2023-07-21 格式:DOCX 页数:25 大小:382.11KB
下载 相关 举报
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第1页
第1页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第2页
第2页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第3页
第3页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第4页
第4页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第5页
第5页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第6页
第6页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第7页
第7页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第8页
第8页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第9页
第9页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第10页
第10页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第11页
第11页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第12页
第12页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第13页
第13页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第14页
第14页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第15页
第15页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第16页
第16页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第17页
第17页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第18页
第18页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第19页
第19页 / 共25页
结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx

《结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx》由会员分享,可在线阅读,更多相关《结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx(25页珍藏版)》请在冰点文库上搜索。

结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展.docx

结构保护系统液体粘滞阻尼器在桥梁工程上的测试和应用的发展

结构保护系统--液体粘滞阻尼器在桥梁工程上的测试和应用的发展

本文大意:

作为二十世纪结构工程界最伟大的科技成果之一–结构的保护系统,特别是各种耗能阻尼器,在近十几年来,发展非常迅速,超出了我们的想象。

随着阻尼器制造技术的不断提高,各种试验、检验技术的完善,精确的计算方法的、设计规范的发展,阻尼器已经从一种附加的保护措施,锦上添花的第二防线(大震时发生)发展到结构构件的一部分,替代传统的结构抗震构件。

数以百计的工程实例,特别是世界重大桥梁工程事例已经给我们工程领域的发展带来了质的飞跃。

墨西哥和美国加州大量设置了阻尼器的建筑和桥梁结构经受了实际地震的检验,给人类能在地球上安全的生活带来了希望。

本文重点介绍阻尼器在工程应用上的发展过程和前景。

1.结构保护系统液体粘滞阻尼器

在地震工程领域内,始终存在着难以解决的问题:

随着科学和计算机的发展,使计算分析越来越精确,但是,地震荷载非常复杂而又粗糙;地震所带来的破坏可能非常大,但发生的概率又非常之低;长期以来,工程师们往往是加大梁、柱、剪力墙用来被动抵抗,而采用更主动的办法减小结构所受地震力上不足。

到了二十世纪末期,这种现象有了很大的改变。

吸收和采用其他航空和机械领域的成果,人们在传统结构构件之外,另加的装置:

如基础隔震(BaseIsolation),利用各种阻尼器(Damper)吸能、耗能系统,高层建筑屋顶上的质量共振阻尼系统(TMD)和主动控制(ActiveControl)减震体系都是已经走向了工程实际。

它们往往是一些机械系统装置,我们称之为结构的保护系统。

对于我们的结构工程师,它是一种新的思路。

标志着我们已经跳出了传统增强梁、柱、墙提高抗振动能力的观念,结合结构的动力性能,巧妙的避免或减少了地震、风力的破坏;对于预想不到地震,对于还不十分清楚的多维振动破坏,它有很好的预防和承受能力;它容易更换,最容易体现小震不坏,大震不倒的抗震原则。

在结构保护系统中,争议最少,有益无害的系统要属利用阻尼器来吸收难予预料的地震能量。

利用阻尼来吸能减震不是什么新技术,在航天航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器来减振消能。

从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等工程中,其发展十分迅速。

简单地说,使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。

而安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。

我们早已经熟习汽车、大炮、电梯间上面使用的减振器。

如果把它进行数学模型化,应用到我们结构工程上,我们传统的结构动力方程可以写成[1][2][14]:

运动方程:

Mÿ+Cý+Ky+CýD=-Mÿg

式中的CýD项,就是阻尼器带来的(先按线形列出)。

只要处理正确,它总是会使运动减小。

如果我们写出能量方程的形式:

能量方程:

EK+ED+ES+EP=EI

结构增加了一个耗能因素EP。

结构增加阻尼以后,结构的反应谱会有很大的降低。

从下列标准动力阻尼反应可以清楚的看出(图1)。

图1单自由度体系不同阻尼比下的动力反应

分解成不同振型的单自由度体系的反应随阻尼器的增大而减少,其多自由度结构相应阻尼比也就响应增加,反应降低。

一般地说,我们很容易通过阻尼器,使多自由度体系的整体阻尼比增加15%-30%[11]。

可以看出,我们所熟习的减振装置,如果能把它精确化、准确化,就可以成为我们工程中可以应用的减振器,可以称为阻尼器或吸能器。

到二十世纪末,人们设计制造出了各种方式的阻尼器。

已经成功实用的阻尼器主要的有以下三种[1][2]:

磨擦阻尼----利用金属(或非金属)之间的磨擦产生阻尼。

加拿大PallDynamic公司的摩擦阻尼最有代表性。

它的构造简单,造价低。

缺点是承受力较小,对于时间,温度和湿度的稳定性都很差。

摩擦启动时的“粘接-滑动”现象对结构的坏影响很大。

(Stick-slipphenomenon)

粘弹性阻尼----利用一些粘弹性材料产生的阻尼。

美国3M公司的粘弹性阻尼在日本有了很大的应用。

但它有个初始刚度,也有温度的稳定性的问题。

液压粘滞阻尼----利用液体在运动中的粘滞特性产生阻尼

这种阻尼器在军事和宇航上已经成功的应用了几十年,精确性好,稳定性高,缺点是价格较高

他们的滞回曲线分别如下(图2):

液压粘滞阻尼        摩擦阻尼        粘弹性阻尼

图2不同阻尼下的滞回曲线

在美国,已经得到结构界广泛共识的是:

这种液压粘滞阻尼器最适于我们结构工程应用,主要一点是,在静止情况下,它没有起始刚度,不会影响到结构的其它计算(如周期,振型等)。

也就不会产生预想不到的副作用。

从图2中的滞回曲线也很容易看出:

只有液压粘滞阻尼在最大位移时受力同时为零。

这种阻尼器也就可以降低地震反应中的结构受力的同时也降低反应位移。

这种阻尼器在其它领域上已有几十年的应用历史,成熟的经验、稳定的结果,都给在建筑结构上应用迅速成功带来了很大帮助。

阻尼器一经使用,就显示出巨大的作用。

最初几年,还没有相应的设计规范和精确的计算方法,它只是成为一种附加的保护措施在工程中应用。

随着计算方法、规范和各种试验、检验技术的完善,实际地震中的观察和测试,它已经完全被人们接受。

阻尼器的使用已经从锦上添花的第二防线(大震时发生)发展到结构构件的一部分,替代传统的结构构件,参加结构分析。

使用阻尼器还会大大减少结构造价。

但这也就给我们在结构中应用的阻尼器提出了很高的要求,它和普通汽车、电梯间、大炮绝然不同。

对我们结构工程师说来,最重要、最关心、也一定要考虑的是以下几方面:

∙精确性,要求阻尼器不仅能在定性上“减振”,还要求能精确的计算出它的阻尼力。

给结构带来阻尼的大小。

美国规范和工程界都已经接受了阻尼器的使用。

也就对阻尼器提出了更高的技术要求。

计算的精确性,就成了重大因素。

∙可靠性,结构要在各种不同的环境下使用,也就要求阻尼器一定要在各种环境下可靠,如:

温度、湿度、盐份及在各种天气环境下的可靠。

∙耐久性,长期使用的的稳定,包括疲劳,长期应用下的徐变等影响。

∙一致性,同一设计要求的阻尼器性能要保持一致可以避免很多不良后果。

这些要求,就使得我们选择阻尼器产品,不能简单地看外形,看一、二次试验的结果。

我们一定要从它的材料、设计制造、产品检验、模型和原型振动分析、工程应用、实际地震的考验、规范和工程界接受等诸方面评价。

特别要强调的是如果没有真正深入了解技术的专家组的鉴定,没有长时间应用的检验就使用的阻尼器可能会漏油,生锈等原因引起失效或部分失效。

带来很多意想不到的有害的副作用。

结构中应用的阻尼器,是我们直接应用航空,机械等行业的长期成熟应用的成果。

但是对于刚起步制造阻尼器的工厂说来,这项技术是个看起来容易,做起来难的产品。

就拿在自然环境下长期收高压使用下不漏油一点来说。

也不是容易作到的。

美国一个原来生产其他减振器的公司为加州一个大桥安置的阻尼器在大桥通车后不到两年,就发生了严重漏油,(见图3)影响了使用。

现在已经在美国重新投标翻新改造。

图3美国加州某漏油的阻尼器

我国几年前在一座跨长江桥竖杆上成功的使用了TMD的技术。

系统显著地减少了振动。

但不幸的是仅相隔四年,阻尼器就因为漏油等原因失效,只能重新更换所有的阻尼器。

在我国,对于使用阻尼器历史不长的国家,这样的事例已经发生了几起。

把好阻尼器质量的关是何等重要。

遗憾的是有关的立法、制度还不能健全。

实际上,更困难的是要保证阻尼器在长期应用下所有的参数都能保持不变或在允许范围内的微小变化。

阻尼器失效,原来的设置目的达不到,还可能会产生预想不到的坏作用。

如:

•结构刚度的改变,周期改变,加大地震力。

引起破坏。

•不均匀破坏,引起扭转等附加力

•变形加大引起伸缩缝处磨损破坏

•支座阻尼器失效引起桥梁的破坏•配合基础隔震的阻尼器一旦失效,地震时会引起建筑过大位移,甚至滑出支座.

图4土耳其某公路桥在地震中的破坏

土耳其某公路桥上安置的支座屈服钢阻尼器在地震中破坏,引起桥面严重破坏(图4)就是另一个严重教训[14]。

这就给阻尼器的制造和出厂质量检验上提出了更高的要求。

当然,也给我国,质量监督,验收监理提出了更高的要求。

二,阻尼器的制造技术

桥梁上常用的阻尼器有以下二种:

1.锁定(Lock-Up)装置(Lock-UpDevice(LUD),orShockTransmissionUnit(STU),它是一种类似速度开关的装置。

当桥梁运动到某一速度下启动。

锁住安置两点间的位移。

这种没有耗能的装置。

在温度,和正常活荷载下可以自由变形。

但对于中小地震荷载,风荷载带来的桥梁各部分间的运动和碰撞可有效的起到减少和限制作用。

2.耗能式液体粘滞阻尼器。

它不仅可以减少位移,又可以减少桥墩或桥塔的受力。

先进的锁定(Lock-Up)装置和阻尼器制造的材料和工艺完全相同。

在制造技术上我们可以把锁定(Lock-Up)装置看成是一个简单的特定阻尼器一起讨论。

确保阻尼器能满足设计和使用的要求,以下几点应该是技术的关键(图5):

1.粘滞液体:

对于液压粘滞阻尼器说,最重要的是用什么液体。

最初人们是采用一种粘性硅胶,也有人用过普通机油。

硅胶没有流动性。

只能单向承受力,在锁定装置中或许还可以使用,却明显不适于用在双向往复运动的阻尼器。

但有的国外阻尼器仍然使用,可见世界阻尼器市场之混乱。

普通机油,对温度的敏感性很强,用在阻尼器上,使其对时间和温度的稳定性都变的很差。

现代最先进的阻尼器都是使用一种特制的硅油,燃点超过340oC,无毒,温度稳定,并不随时间老化变质,是一种理想的粘滞材料。

2.密封技术:

前面曾介绍过阻尼器漏油的实例,这也突显密封技术的重要。

世界最先进的阻尼器专业制造厂–美国泰勒公司不断改进提高自己专利的密封技术。

全部是自己加工的密封件,这已经成了他们生产几十年不漏油产品的关键。

3.储油库:

为了补充和调整阻尼器内的油量,有的厂生产的阻尼器外加一个储油罐,另用一个阀门控制送油。

这种外加储油罐和阀门的办法,增加了阻尼器的外露装置,也就增加了破坏的可能。

也有的产品有一个内设油库。

但最好的产品是采用的是高度平衡的活塞杆,用油量能精确计算,密封完美的产品。

这种产品,更本就无须油库。

这也是阻尼器生产不断改进的另一个地方。

4.活塞和活塞头:

高度抛光的活塞杆是阻尼器的另一个关键。

为了不允许有任何变形、锈蚀,应采用不锈钢活塞杆,有时采用络合金板相连。

活塞杆的设计要求承受运动过程中的任何载荷,不允许变形。

要求和活塞缸紧密结合的活塞头把阻尼器分成两个液腔,活塞头上的小孔和活塞与缸体的空隙使两个腔体中的液体,在一定的活塞压力下可以按设计要求来回流动。

5.阻尼参数:

阻尼器的受力是靠金属筒的受力来保证。

阻尼参数的确定就要复杂的多。

阻尼器内液体的粘稠程度和活塞上留孔的大小及活塞与缸体的空隙决定了阻尼参数的大小。

流体力学的计算最多可以给出我们一个参考数据,而经验和试验的调整是给出精确解答的保证。

当然,阻尼器的制造离不开材料的选择。

在我们后面介绍的美国桥梁阻尼器使用规程的AASHTO32SECTION中对阻尼器的材料使用,有了明确规定。

图5美国泰勒公司液压粘滞阻尼器构造

图6泰勒公司生产的680吨大型锁定装置及桥上的安装

图6美国ENDINE公司阻尼器外型

图7意大利FIP公司的阻尼器

综上所诉,精选的材料;优质的设计;高超的工艺;严密的密封是高质量液体粘滞阻尼器的基础。

 

三,阻尼器在结构上的应用的联合测试[9][8]

八十年代中期,随着美国国家地震研究中心(NationalCenterForEarthquakeEngineeringResearch(NCEER))在纽约州立大学布法罗分校的建立,泰勒公司就开始和美国国家地震研究中心的研究人员一起研究,将用于军事上的减振阻尼器转用在土木工程中。

在美国科学基金的支持下,他们作了大量的试验研究,振动台上检验。

处于地震活动地段的加州大学伯克利分校地震研究中心以及其他院校和研究单位也同时作了大量的研究。

这些研究报告都证明了,这些用于其它机械系统上阻尼器用在结构中,只要稍加改进就能十分成功(图7)[1][2][6][7]。

这些试验室里的试验也许还有使人们有不放心之处,为了保证阻尼器能安全有效的使用,和正确的推广。

美国国家科学基金会和美国土木工程协会等单位,分别组织了两次大型联合测试。

分别是阻尼器在美国旧金山金门大桥工程的对比检验和美国高速公路创新技术评估中心的大型试验。

1.旧金山金门大桥工程的对比检验[9]

1995年,美国科学基金会(NSF)组织了针对美国旧金山金门大桥工程的阻尼器对比检验。

NSF组织了由T.Y.Lin公司,加州伯克利大学专家组成的小组。

评选小组经过分析,选择了世界上最好的四种液压粘滞阻尼器(德国、意大利、美国ENIDINE和Taylor公司)进行了严格的检测测试,内容包括:

1.阻尼器力学滞回曲线检测:

分别生产的阻尼器,要求符合公式F=75kipsec1/2/in1/2V½

这里,F为阻尼力;75为假定的阻尼器的阻尼值;V为阻尼器两端间的相对运动速度而α=1/2为速度的指数。

在不同的条件下要求误差在15%以内:

采用前两圈的平均值作为对比的基准反应

2.阻尼器的最大承受负荷:

其中包括:

最大受力,最大允许冲程,

峰值速度,峰值加速度,持续时间,频率。

3.耗能效率:

峰值功率,平均功率,能量耗散效率ð

ð=looparea/(Fmax-Fmin)x(Dmax-Dmin)x100%

这里,looparea–阻尼力和位移滞回曲线面积,Fmax,Fmin–最大和最小阻尼力,Dmax,Dmin--最大和最小位移

这里,用简谐振动的前五圈记录结果进行检测。

其能量耗散效率¦均要求等于或大于82.5%.

4.耐温试验,不同温度下曲线的测定

旧金山是4o-52oC摄氏度,要求阻尼器力学滞回曲线的变化在15%以内

5.频率检测:

不同频率简谐振动输入时阻尼器的特性变化。

频率变化从1-5HZ时,要求阻尼器力学滞回曲线的变化在15%以内

6.耐久及抗疲劳试验:

考虑风荷载下的抗疲劳能力,测试阻尼器的密封系统在1800次往复运动中是否有漏油,阻尼器力学滞回曲线的变化是否在15%以内。

强调在长期高次数车辆交通荷载的运行中的抗磨损能力,防漏油能力

7.耐腐蚀抗老化材料:

采用的不锈钢或不锈钢等同耐腐蚀的钢材在不同可能的环境下抗腐蚀,老化的能力。

8.地震输入检测:

将90秒持续时间,峰值20in/sec;峰值位移为6英寸的地震记录输入,安置了阻尼器的结构。

观察试验结果是否符合公式要求。

这些要求,是和美国后来陆续发表的规范和规程的要求完全符合。

试验结果证明了美国Taylor公司阻尼器是适用于重要工程的合格高质量产品。

2.HITEC对比试验[8]

为了进一步评估对比桥梁上可以应用的支座和阻尼器等新技术,美国土木工程基金会(CivilEngineeringResearchFoundation)(CERF),于1994年成立了“高速公路创新技术评估中心”(HighwayInnovativeTechnologyEvaluationCenter)(HITEC)。

从1994年开始他们组织了10个公司的11种产品集中对比试验。

所有的试验由一个客观的委员会集中管理。

委员会由加州交通局地震工程桥梁高级工程师MohsnSultan领导,主要由各州交通局有关专家组成。

试验是在有30年测试经验的美国能源技术工程中心(EnergyTechnologyEngineeringCenter)(ETEC)进行。

测试的结果于1999年公开发表出来,供桥梁的设计者和业主在未来工程中选用参考,也为美国相应的设计规程的制定提供了重要参考依据。

如,美国高速公路管理委员会(FederalHighwayAdministration)(FHWA),美国州公路交通办公路桥梁委员会(AmericanAssociationofStateHighwayandTransportationOfficial)(AASHTO)都在相应规定和规程中都参考了这一测试结果。

该试验中参加的消能阻尼器的产品有三个,分别是:

表1参加测试的三个公司阻尼器

产品

特点

Enidine,INC

液压阻尼

能量耗散

TaylorDevices,INC

液压阻尼

 能量耗散

OilsCorporation

液压剪力阻尼

 能量耗散

 每个公司提供5个产品,分别要求为:

表2每个公司提供测试的5个阻尼器样品

阻尼力(DCC)

运动等级

设计位移(CDD)

TA1

150(668KN)

152.4mm

TA2

500(2227KN)

228.6mm

TA3

500(2227KN)

228.6mm

TA4

500(2227KN)

228.6mm

TA5

750(3340KN)

304.8mm

测试的项目有:

1,基准表现

10个循环平均值,2.0秒周期。

2,不同试验频率下阻尼器特性

试验0.05HZ,0.2HZ,0.5HZ,0.1HZ和2.0HZ下是否都能符合原阻尼器的基本关系式F=C•Vα和耗能系数的对比。

3,疲劳和磨损

10,000次循环阻尼器无明显变化及破损。

4,环境测试

耐盐试验,在喷洒盐1000小时以后测试其性能变化。

5,温度变化下的阻尼器参数变化

在-40℉(-40℃)到120℉(48℃)下阻尼器系数等参数是否有明显变化。

6,持久性试验

对周期2秒的输入荷载,按最大设计位移下作20个循环试验观察,其性能衰减的情况。

7,极限表现测试

超载到二倍设计速度的情况下,看阻尼力及超权限反应下是否破坏。

测试委员会不作结论性的评论,但如实发表的测试报告,对阻尼器的好坏,其优缺点读者很容易得出结论。

在这些三个工厂的阻尼器试验完成后。

意大利FIT公司也与2000年独立作了对应的试验并独立写了试验报告[16]。

我国自己国产的阻尼器,没有机会参加上述两个大型联合试验,不妨模仿FIT公司的办法,生产出同样性能的阻尼器,请有能力的第三者作出独立检测报告。

这是能达到国际水平,被工程界认可的第一步。

值得注意的是,为了保证测试的公正性,这两次联合测试都是由第三者作的客观试验。

都邀请了工程单位,工程管理单位参与。

四.阻尼器在结构上的健康监测

阻尼器的质量,特别是耐久性,是致关重要的。

特别是在结构上起重大作用的阻尼器。

总有人希望了解它的可靠性。

无论从实用和研究的角度,作使用中的在线健康监测都是很有意义的。

美国西雅图在SAFECO棒球场作的阻尼器长期工作十分有意义。

虽说是个建筑,但同样可以作我们桥梁上参考。

我们在这里介绍一下。

于1999年竣工交付使用的这一建筑工程,整个屋顶面积为192mx200m,屋顶高度为64米(图8)。

由三部分组成的屋顶,可以按建筑功能的需要开启和关闭。

全部屋顶的重量为一万吨重。

这个庞然大物屋顶的结构座落在美国太平洋沿岸地震带的北部城市西雅图。

属于美国Zone4地震区。

该建筑又要经受太平洋沿岸的大风。

设计中要求这一万吨重的屋顶在运动中安全,最小的运动碰撞。

下决心使用液压粘滞阻尼器,选择阻尼器的位置、数量、计算大小都是需要精心考虑和设计的。

按建筑功能的考虑,整个主体结构是两边支持高度不同,柱子高度不同的门式钢架。

高起的部分为四品三节间。

低下的部分为四品二节间,设在建筑的两端。

在移动开启时,低下部分移动到高起部分下并和高跨门架一起开赛场位置。

形成了开敞的部分。

设计中的主要考虑是地震和大风中的横向受力和变形。

考虑到最大的可能位移位置,阻尼器设置在门架的柱子和屋顶部分的连接处。

对于中间位置的高起的四品门架,设在高起的外侧连接处(见图10)。

考虑到结构上连接点的距离,设计者设计了四个世界上最大的7米长的阻尼器(见图9)。

这四个阻尼器的单个受力能力,要求达到500吨,每个重量4.5吨。

允许运动冲程375mm。

建筑师还给阻尼器的尺寸提出了特殊严格要求:

不允许直径有25%以上的变化。

为了防止西雅图海鸥粪便的污染、腐蚀,这里制造的阻尼器都要经过特殊的防锈化学处理,使材料的防锈能力比普通不锈钢还要高出许多。

在四个低跨门架上,阻尼器被安置在屋顶绗架和柱子的连接处(见图11)。

4个同样承受能力和冲程但不同长短的液压粘滞阻尼器被设置在这里。

加上以上阻尼器后,和常规设计相比,节省了四百二十万美圆。

是设计人员和泰勒公司共同完成的一个杰作。

图8西雅图SAFECO棒球馆

 

图9SAFECO使用的阻尼器        图10SAFECO屋顶阻尼器的安置

图11SAFECO低跨门架阻尼器的安置

所有这些阻尼器都经过严格的质量检验。

均能达到设计的质量保证要求。

然而,业主和有关设计人员为了能更好的监测所安置的阻尼器系统。

设计并使用了在线健康检测。

在所有8个阻尼器的部位都安置了位移和应变传感器,在相应的结构部位,安置了加速度计量计(图12,13,14)。

图12结构上传感器的安设部位

图13位移计传感器        图14加速度计

图15现场转换,传递控制盘

SAFECO工程采用的是美国DATAQINSTRUMENTS公司的信号采集系统。

他们将阻尼器上传感器上采集的信号传给DI-75B采集装置,DI-75B中内设5B类型信号条件模块,将信号放大并与不相关信号分离。

DI-75B和一个无线传递信号的DI-720装置相连,将信号通过无线电传送到总控制室。

以上DI-75B和DI-720均设置在现场的控制盘内(图15)。

总控制室可以设在该工程的任何部位。

为了更好的观察,监测和对比这一安装了阻尼器工程的结构反应在线数据,特别是在西雅图大风下的反应,在总控制室还安设了加速度计,风速计和风向计。

所以这些信号和现场三个盘的信号一起,通过一个以太网络送进中心计算机进行分析。

分析的软件是DATAQINSTRUMENTS公司提供的:

WinDaqPro。

以上过程示在下框图(图16)内:

图16在线健康检测设置示意图

整个监测系统是每天24小时在线监测。

每个控制盘和总控制室内都设有5个小时的UPS断电保护器。

从监测系统的计算机就很容易判断结构和阻尼器是否出现异常,发生问题。

值得一提的是,位于太平洋板块附近的西雅图也是地震高发区。

在1999年安置了阻尼器后,已经经历了多次中小地震。

也采集了很多地震记录,如下图17。

图17SAFECO采集的地震记录

在这些地震和大风中,该结构和它的阻尼器一起都经历了考验,完好无损。

五.美国设计规范和规程,产品的出厂检验

在美国国家地震研究中心,美国加州大学伯克利分校地震研究中心已经很多大学参与试验研究的基础上。

美国又组织了上述两次大型联合测试。

液压粘滞阻尼器不仅赢得了学术界的赞同,也带来了设计者、建设者的青昧。

美国各种建筑,桥梁规范的编制和管理都参与了审查和评估,其中包括:

ATC17,ATC33(AppliedTechnologyCouncil1995)[5]

FEMA273,274,368(FederalEmerg

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2