实验四填料吸收塔地操作及吸收传质系数地测定.docx

上传人:b****2 文档编号:18215786 上传时间:2023-08-13 格式:DOCX 页数:10 大小:39.43KB
下载 相关 举报
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第1页
第1页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第2页
第2页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第3页
第3页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第4页
第4页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第5页
第5页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第6页
第6页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第7页
第7页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第8页
第8页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第9页
第9页 / 共10页
实验四填料吸收塔地操作及吸收传质系数地测定.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

实验四填料吸收塔地操作及吸收传质系数地测定.docx

《实验四填料吸收塔地操作及吸收传质系数地测定.docx》由会员分享,可在线阅读,更多相关《实验四填料吸收塔地操作及吸收传质系数地测定.docx(10页珍藏版)》请在冰点文库上搜索。

实验四填料吸收塔地操作及吸收传质系数地测定.docx

实验四填料吸收塔地操作及吸收传质系数地测定

实验四填料吸收塔的操作及吸收传质系数的测定

姓名:

学号:

学院

专业

班;

同组同学姓名:

.

实验日期:

;天气:

;室温:

大气压:

;成绩:

一、实验目的

1.了解填料吸收塔的结构和操作流程;

2.掌握产生液泛现象的原因和过程。

3.明确吸收塔填料层压降p与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系

4.了解吸收剂进口条件的变化对吸收操作结果的影响;

5.掌握气相总容积吸收传质系数Ky,α的测定方法

二、基本原理

吸收是指利用气体中各组分在液相中溶解度的差异而分离气体混合物的操作。

在吸收过程中,所用液体成为吸收剂(或溶剂);气体中被溶解的组分称为吸收质或溶质;不被溶解的气体组分称为惰性气体或载体;吸收操作所得到的液体称为溶液(主要成分为吸收剂和溶质);剩余的气体为尾气,主要成分为惰性气体,还有残余的吸收质。

1.气液相平衡关系

大多数气体物质A溶解形成稀溶液时,稀溶液上方溶质A的平衡分压pA*与其在溶液中的

摩尔分数xA成正比:

pA*=ExA

(4-1)

这就是亨利定律。

式中,E为亨利系数(kPa)。

若气相组成也用平衡摩尔分数y*表示,则(3-4-1)式可写为:

yA*=ExA/p总

(4-2)

令E/p总=m,则

yA*=mxA

(4-3)

式中,m为相平衡系数,量纲为1。

吸收过程中,溶液和气体的总量在不断变化,使得吸收过程的计算比较复杂。

为了简便起见,工程计算中采用在吸收过程中数量不变的惰性气体(如空气)和纯吸收剂为基准,用物质的量之比(也称为比摩尔分数)来表示气相和液相中吸收质A的含量,并分别用YA和XA表示。

平衡时,其关系式为:

YA*=mXA/(1+(1-m)XA)

当溶液浓度很低时,XA很小,则1+(1-m)XA≈1,式(3-4-4)可简化为:

YA*=mXA

2.填料吸收塔流体力学特性

填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。

填料层上方有液体分布装置,可以使液体均匀喷洒在填料塔上。

液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。

吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降△P的产生。

填料塔的流体力学特性是吸收设备的主要参数,它包括压强降液泛规律。

了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。

填料塔的流体力学特性的测定主要是确定适宜操作气速。

在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降△P与空塔气速u的关系可用式△P=u1.8-2.0表示。

在双对数坐标系中为一条直线,斜率为1.8—2.0。

在有一条喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。

在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守△P∝u1.8-2.0这一关系。

但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。

当气速增加到某一值时。

由于上升气流与下降液体的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。

进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在△P∝un关系式中,n的数值可达10左右,此点称为泛点。

在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。

随着喷淋密度的增加,填料层的载点气速和泛点气速下降。

本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。

3.吸收速率方程式

在吸收操作中,气体混合物和吸收剂分别从塔底和塔顶进入塔内,气液两相在塔内逆流接触,使气体混合物中的溶质溶解在吸收质中,于是塔顶主要为惰性组分,塔底为溶质与吸收剂的混合液。

反映吸收性能的主要参数是吸收系数,影响吸收系数的因素很多,其中有气体的流速、液体的喷淋密度、温度、填料的自由体积、比表面积以及气液两相的物理化学性质等。

吸收系数不可能有一个通用的计算式,工程上常对同类型的生产设备或中间试验设备进行吸收系数的实验测定。

对于相同的物料系统和一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。

本实验用水吸收空气—氨混合气体中的氨气。

氨气为易溶气体,操作属于气膜控制。

在其他条件不变的情况下,随着空塔气速增加,吸收系数相应增大。

当空塔气速达到某一值时,将会出现液泛现象,此时塔的正常操作被破坏。

所以适宜的空塔气速应控制在液泛速度之下。

本实验所用的混合气中氨气的浓度很低(<10%),吸收所得溶液浓度也不高,气液两相的平衡关系可以被认为服从亨利定律。

物质的吸收速率方程式为:

NA′=NA·A=KyA∆yA,m

(4-6)

式中:

NA′——吸收传质速率(kmol·h-1);NA——吸收传质通量(kmol·m-2·h-1);

Ky——以气相摩尔分数差(y*-y)为推动力的气相总传质系数,(kmol·m-2·h-1);

A——填料的有效接触面积(m2);

∆yA,m——以气相摩尔分数差(y*-y)表示的塔顶、塔底气相平均推动力。

若以填料的有效体积表示,则

NA′=Ky,αV填∆yA,m

(4-7)

式中:

V填——填料层堆积体积(m3);

Ky,α——以气相摩尔分数差为推动力的气相总容积吸收传质系数(kmol·m-3·h-1)。

若以比摩尔分数表示,则(3-4-7)可以写为:

NA’=KY,αV填∆YA,m

(4-8)

式中:

KY,α——以气相比摩尔分数差(Y*-Y)为推动力的气相总容积吸收传质系数(kmol·m-3·h

-1)。

4.气相平均推动力∆Ym

将吸收操作线和平衡线绘于坐标纸上,在平衡线为直线或近似为直线时,

∆Ym=(∆Y1-∆Y2)/ln(∆Y1/∆Y2)

(4-9)

式中:

∆Y1=Y1-Y1*=Y1-mX1

(3-4-10)

∆Y2=Y2-Y2*=Y2-mX2

(4-11)

5.传质系数

由式(4-7)可得

Ky,α=NA’/(V填料⨯∆yA,m)

又根据双膜理论,在一定温度下,吸收总系数Kya可用下式表示:

1/Kya=1/kya+m/kxa

式中:

kya——气膜吸收传质系数,mol·m-3·hkxa——液膜吸收传质系数,mol·m-3·h

由于ky,α=Aqn,Ba(3-4-14)

kx,α=Bqn,Cb

显然,Ky,α与气体流量与液体流量都密切相关,其关系式可由下式表示

Ky,α=Cqn,Baqn,Cb

 

6.全塔物料衡算和操作线方程

在稳定操作条件下,惰性气体(如空气)和纯吸收剂的量基本上没有变化。

在任一微分段中,从气相扩散出的吸收质必为同微分段的液体所吸收,则物料衡算式如下:

dNA’=qn,B(-dYA)=(-qn,C)dXA(4-17)

式中:

qn,B——惰性气体流量(kmol·h-1);qn,C——吸收剂流量(kmol·h-1);

注:

“-”是由于吸收剂与气体运动方向相反。

对全塔进行物料衡算,则得:

 

(4-12)

 

(4-13)

 

(4-15)

 

(4-16)

 

qn,B(YA,1-YA,2)=qn,C(XA,1-XA,2)

(4-18)

列出操作线方程:

YA=

qn,C

X

A

+(Y

-

qn,C

X

A,2

(4-19)

qn,B

A,2

qn,B

它是一条通过(XA,1,YA,1)、(XA,2,YA,2)两点的直线。

这条直些就是吸收的操作线。

Y

操作线Y

=qX/q

n,B

+(Y

A,2

-qX

A,2

/q

Y

A

n,CA

n,C

n,B

A,1

平衡线(Y

*=mX

Y

A

A

A,2

X

X

X

A,2

A,1

图-4-1吸收操作线和平衡线

7.填料吸收塔的操作和调节

吸收操作的结果最终表现在出口气体的组成yA,2上,或溶质的吸收率η上。

吸收率的定义为:

η=

YA,1-YA,2

⨯100%

(4-20)

YA,1

由于吸收塔的气体进口条件(气体中惰性气体的流量为qn,B和吸收质的组成为YA,1)是由前一工序决定的,因此根据式(4-19)可知,控制和调节吸收操作最终结果的方法只能是调节吸收剂

的进口条件:

流量qn,C、温度t、浓度XA,2三个要素。

改变吸收剂用量是对吸收过程进行调节的常用方法。

从式(4-19)的吸收操作线方程可以看

出,当气体流量qn,B不变时,增加吸收剂流量qn,C,操作线的斜率增加,出口气体的组成YA,2下

降,吸收率η增大,溶质吸收量增加,吸收速率NA’增加。

当液相阻力较小时,增加液体的流量,总传质系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力∆ym的增大而引

起的,即此时吸收过程的调节主要靠传质推动力的变化。

但当液相阻力较大时,增加液体的流量,总传质系数大幅度增加,而平均推动力可能减少,但总的结果使传质速率增大,溶质吸收量增大。

q

应该注意,当气液两相在塔底接近平衡(

n,c

q

n,B

吸收剂用量的方法很有效。

但是,当气液两相在塔顶接近平衡时(

YA,2,提高吸收率,用增大

q

n,c

>m)时,提高吸收剂

q

n,B

用量,即增大qn,c并不能使YA,2明显降低,这时只有降低吸收剂入塔浓度XA,2才是有效的。

qn,B

调节吸收剂进口浓度XA,2是控制和调节吸收效果的又一重要手段。

吸收剂进口浓度XA,2降

低,液相进口处的推动力增大,全塔平均推动力也会随之增大而有利于吸收过程吸收率的提高。

吸收剂入口温度对吸收过程影响也很大,这也是控制和调节吸收操作的一个重要因素。

降低吸收剂的温度,使气体的溶解度增大,相平衡常数减小,平衡线下移,平均推动力最大,使

吸收效果变好。

 

三、实验装置

本实验以水为吸收剂,通过填料塔吸收分离空气-氨气混合气中的氨气。

空气由鼓风机1送

入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,经过氨瓶总阀8进入氨气转子流量计9计量,氨气通过转子流量计处温度由实验时大气温度代替。

其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。

分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。

在吸入塔顶尾气之前,予

先在吸收瓶14内放入5mL已知浓度的硫酸作为吸收尾气中氨之用。

玻璃吸收塔的内径为75毫米,填料层高度730毫米,填料为φ10×10×1.5mm的瓷质拉西环。

空气转子流量计,型号LZB-25,流量范围6~60m3/h,精度2.5%;水转子流量计,型号

LZB-6,流量范围10~100L/h,精度2.5%;氨转子流量计,型号LZB-6,流量范围0.06~0.6m3/h,

精度2.5%。

温度测量,PT100铂电阻测量,由温度显示仪表显示;塔压测量,压差变送器,型号

SM93420DP,测量范围0~10KPa。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2