Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx

上传人:b****0 文档编号:18240091 上传时间:2023-08-14 格式:DOCX 页数:12 大小:858.83KB
下载 相关 举报
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第1页
第1页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第2页
第2页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第3页
第3页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第4页
第4页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第5页
第5页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第6页
第6页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第7页
第7页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第8页
第8页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第9页
第9页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第10页
第10页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第11页
第11页 / 共12页
Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx

《Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx》由会员分享,可在线阅读,更多相关《Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx(12页珍藏版)》请在冰点文库上搜索。

Effect of Crack Length and Orientation on the MixedMode Fracture Behavior of Graphene.docx

EffectofCrackLengthandOrientationontheMixedModeFractureBehaviorofGraphene

SUPPLIMENTARYINFORMATION

EffectofCrackLengthandOrientationontheMixed-ModeFractureBehaviorofGraphene

DibakarDatta1,SivaP.V.Nadimpalli2*,YinfengLi3,VivekB.Shenoy4,5,*

Allauthorscontributedequallytothiswork

1SchoolofEngineering,BrownUniversity,Providence,RI02912,UnitesStates

2DepartmentofMechanicalEngineering,NewJerseyInstituteofTechnology,Newark,NJ,UnitedStates

3DepartmentofEngineeringMechanics,SchoolofNavalArchitecture,OceanandCivilEngineering(StateKeyLaboratoryofOceanEngineering,CollaborativeInnovationCenterforAdvancedShipandDeep-SeaExploration),ShanghaiJiaoTongUniversity,Shanghai,China

4DepartmentofMaterialsScienceandEngineering,UniversityofPennsylvania,Philadelphia,PA19104,UnitedStates

5DepartmentofMechanicalEngineeringandAppliedMechanics,UniversityofPennsylvania,Philadelphia,PA19104,UnitedStates

*CorrespondingAuthors:

Dr.VivekB.Shenoy;Email:

vshenoy@seas.upenn.edu

Dr.SivaP.V.Nadimpalli;Email:

siva.p.nadimpalli@njit.edu

 

1.IsAIREBOpotentialgoodforthisproblem?

TheAIREBOpotentialwehaveusedisthesameoneusedinthepioneeringworkbyGrantabetal.Science330,946(2010)1,wheretheyhaveinvestigatedstrengthandcrackpropagationpathwayofgraphenewithdifferentsymmetricgrainboundaries.Theycarefullyvalidatedbydeformingpristinegrapheneandcomparingtheresultstoexperiments.Simulationresultsshowanelasticmodulusof1TPa,anultimatestrengthof120GPa,andastrain-at-failureof20%.Thepredictionswerewithin5-10%oftheexperimentalvaluesreportedbyLeeetal.Science321,385(2008)2.Grantabetal.discoveredmechanismsbehindtheanomalousstrengthcharacteristicsofgraphenewithgrainboundariesbystudyingthecrackpropagationpathways.

AIREBOpotentialhasbeenextensivelyusedforinvestigatingfractureandcrackpathpropagationofgrapheneunderdifferentloadingconditionsandsurfacetopology.Weietal.NatureMaterials,11,759-763(2012)3studiedfracturebehavioroftiltGBsforvariouspentagon-heptagondefects.Bystudyingthecrackpathpropagation,theydiscoveredthatmechanicalfailurealwaysstartsfromthebondsharedbyhexagon-heptagonrings.Inarecentpaper,Zhangetal.NatureCommunications5,(2014)4computedthefracturetoughnessofgraphemeandverifiedtheirresultswithexperiments.

Inaddition,therehavebeenmanyotherstudieswherepeoplehaveverifiedsimulationsresultsfromAIREBOwithexperiments.Zhangetal.NanoLetters,12(2012)5performedseriesofmoleculardynamicssimulationtoshowthattensilefracturebehaviorofananocrystallinegraphene(nc-graphene)nanostripcanbecomeinsensitivetoapre-existingflaw.TheyverifiedthatresultsobtainedfromAIREBOpotentialsperfectlymatchwithexperiments.Inaveryrecentstudy,Yinetal.NanoLetters,15(2015)6systematicallystudiedthecrackpathpropagationfordifferentcracklength.Theirestimatedvaluesoffracturetoughnessmatchwellwithexperiments4.

Huangetal.PHYSICALREVIEWB85,195453(2012)7discussedaboutthetearingofmonolayergraphene.Theydeterminedthefracturepathofmonolayergrapheneundertearingi.e.outofplandisplacementofgraphenesheet.Intheirstudy,theyconsideredtwobasicfracturemodes:

opening(modeI)andout-of-planeshear(modeIII).Forconsistency,modeIIwasnotincluded(KII=0).Themodemixity,

isdefinedby

rangingfrom0(puremodeIII)to

(puremodeI).Ontheotherhand,ourworkisconfinedinin-planedisplacement.WeconsideredmodeIandmodeII.Mixed-modeintensityfactorwasdefinedas

.Wehaven'tconsideredanyout-of-planeshear.Intheirstudy,Huangetal.didn'tmentionanythingaboutapplicabilityofREBOpotential.Zhangetal.AppliedPhysicsLetters101,121915(2012)8alsostudiedstrengthandcrackpropagationofgrapheneundermixed-modeloadingwithAIREBOpotential.

Moreover,basedonREBOpotential,Zhangetal.NatureCommunications5,20144verifiedthatthefracturestressisthelowestforthezigzagcrackedge,andthelargestalongthearmchairone;itvariesmonotonicallyforintermediateorientationsofcrack.Theseresultscanbecorrelatedtotheorientationdependenceoftheedgeenergy,

whichisthelowestof11.8Jm-2forthezigzagedgeandthehighestof12.5Jm-2forthearmchairedge.Thisresultedisexpectedandwellaccepted.However,theywrote:

thistrendisoppositetothatpredictedbyreactiveforcefield(ReaxFF)calculations9.Hence,thepotentialwehaveusedcanaccuratelysimulatethecrackpropagationpathwayofgrapheneunderdifferentloadingandsurfacetopologyandresultsareingoodagreementwithexperimentalresults.

2.Effectoflatticetrapping

AsmentionedbyZhangetal.10thelattice-trappingstrengthmonotonicallydecreaseswithincreasinginteractionrangeofthepotentialandbecomenegligiblysmallforlong-rangepotentials.TheAdaptiveIntermolecularReactiveEmpiricalBondOrderPotential(AIREBO)11,includedintheLAMMPSpackage,wasusedtomodeltheinter-atomicforcesinthisstudy.TheAIREBOpotentialisanimprovedversionofBrenner'swell-knownsecondgenerationReactiveEmpiricalBondOrderPotential(REBO)thatincludesaLenhard-Jones(LJ)potentialformtodescribetheVan-der-Waalslong-rangeinteractionsandatorsionaltermforthe

-bondtorsion.ThegeneralformoftheAIREBOpotentialis

(S-1)

Thelong-rangedinteractionsbetweensp2sheetsaredescribedthroughLJinteractions:

the

termprovidesthemissingrepulsion,whilethe

termcapturesthevanderWaalsinteraction.TheLJterminAIREBOisgraftedontotheREBOformalism,employingswitchingfunctionsto(de)activatetheLJinteractionsonthebasisofdistanceandbond-order.Becauseofthislong-rangeinteraction,wedidn'tconsiderlattice-trappingeffect.

3.Effectofedgestressandsurfaceenergy

TherehavebeenseveralstudiesonthevariousaspectsofmechanicalpropertiesofGNRespeciallyabouttheedgelengthbeyondwhicheffectoflengthdiminishes.Reddyetal.12wrote:

`asthewidthofsheetincreases,theedgeeffectgraduallydiminishes,andtheeffectiveelasticmodulusEeffapproachesaconstantvalue,whichisthebulkelasticmodulusE(1900eV/nm2or0.9TPa,assumingthegraphenethicknessof0.335nm)ofgraphene.Thisvalue,whichisindependentofthewidthandedgestructureofgraphenesheet,isingoodagreementwiththeexperimentallymeasuredvalue2’.Luetal.13wrote`theedgeeffectontheinitialYoung'smodulusofGNRsdiminishesastheribbonwidthincreases.'

Reddyetal.12showedthatforGNRfreeedgelengthofover8nm,effectiveelasticmodulusconvergesto≈1900eV/nm2forallkindsoffreeedges–zigzag,armchair,hydrogenatedzigzag,hydrogenatedarmchair.Luetal.13alsoshowedthatbeyond8nmoffreeedgelength,2DYoung’smodulusconvergesto≈243N/m.Zhaoetal.showedthatforgraphenenanoribbon’sdiagonallengthover≈12nm,Young’smodulusandPoissonratioconvergestoperiodicvaluesi.e.1.01±0.03TPaand0.21±0.01respectively.

That’swhyweconsideredribbonwidth≈10nmasatthislength,edgeeffectdiminishes.Wedidn’tconsiderperiodicityaswefollowedthepioneeringworkofGrantabetal.1

4.AIREBOpotentialforsimulationathightemperature

AIREBOpotentialwehaveusedhasbeenverifiedandmatchedwithexperimentalresults.Thispotentialhasbeenusedtostudyfractureofgrapheneathighertemperature.Zhaoetal.14investigatedthevariationinfracturestrengthofgraphenewithtemperature,strainrate,andcracklengthusingmoleculardynamics(MD)simulations.Theystudiedfractureofpristinegrapheneundervarioustemperatures–300K,600K,900K,1200K,1500K,1800K,2100K,and2400K.Inaddition,graphenewithslitswerestudiedathightemperaturee.g.1200K.Thisstudyiswellacceptedandhasbeencitedover100times.

Recently,Dewapriyaetal.15studiedgraphenesheetwithdifferentcracklengthsatvarioustemperatures.Inaddition,AIREBOpotentialhasbeenwidelyusedtostudyfractureofgraphenewithdifferenttopologicalandloadingconditionsathightemperaturese.g.Zhangetal.16,Baimovaetal.17.

5.ArmchairandZigzagDirection

FigureS1:

GNR(withcrackoflength2a)issubjectedtoloading(markedinred)inboth(a)zigzagand(b)armchairdirection.

Inthisstudy,wehaveconsideredpullinginarmchairandzigzagdirections.WehaveclearedourdefinitionofarmchairandzigzagdirectionsinFigureS1.WementionedinourmanuscriptthatGNRwasloadedinbothzigzagandarmchairdirectionsasshowninFigureS1aandS1brespectively.Figure1and2showtheModel-1andModel-2respectively.TherewehaveshownonlyonedirectionofloadinginordertoclarifythemeaningofloadingangleΦ,slitangleθandotherdefinitions.GiventhatdefinitionofarmchairandzigzagdirectionsareclearedinFigureS1,whenwespeakaboutloadinginthesetwodirections,weassumethatreaderswillunderstandwhatwemeanforit.

 

6.HowtocomputethefarfieldstressinGrapheneNanoribbon(GNR)?

FigureS2:

PristineGNRissubjectedtotensileloading.Stresscomputedbyaveragingoverthewholesystemgivescorrectstrengthandyoungmodulus.Stresscomputedbyaveragingovertheatomsattheboundaryyieldserroneousresults.

 

FigureS3:

ComputationoffarfieldstressforSIFcalculation.Farfieldstresscomputedbyaveragingovertheentiresystemgivescorrectmeasurement.

 

7.StressIntensityFactors(SIF)withrespecttoLoadingAnglefordifferentcracklength

FigureS4:

StressIntensityFactors(SIF)forcrackswitharmchair(a-c)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2