机械毕业设计(论文)-直接加热转筒式干燥机设计.doc

上传人:wj 文档编号:1945720 上传时间:2023-05-02 格式:DOC 页数:63 大小:1.73MB
下载 相关 举报
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第1页
第1页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第2页
第2页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第3页
第3页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第4页
第4页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第5页
第5页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第6页
第6页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第7页
第7页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第8页
第8页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第9页
第9页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第10页
第10页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第11页
第11页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第12页
第12页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第13页
第13页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第14页
第14页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第15页
第15页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第16页
第16页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第17页
第17页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第18页
第18页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第19页
第19页 / 共63页
机械毕业设计(论文)-直接加热转筒式干燥机设计.doc_第20页
第20页 / 共63页
亲,该文档总共63页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

机械毕业设计(论文)-直接加热转筒式干燥机设计.doc

《机械毕业设计(论文)-直接加热转筒式干燥机设计.doc》由会员分享,可在线阅读,更多相关《机械毕业设计(论文)-直接加热转筒式干燥机设计.doc(63页珍藏版)》请在冰点文库上搜索。

机械毕业设计(论文)-直接加热转筒式干燥机设计.doc

第63页

1绪论

随着时代的发展,环境问题已经越来越多的被人们重视。

燃料煤是近现代的主要燃料,取暖、照明、工业无处不用。

而煤燃烧所生成的污染物排放到大气中,对环境造成了很大的污染。

这个问题有待解决。

随着人类对煤的研究,发现了原煤和生物量的混合物,燃烧几乎不含污染性气体物。

这个发现,不仅是科技的进步人类的发展,更重要的是可以在很大程度上解决煤的污染问题。

生物煤的生产流程:

原煤和生物量分别干燥、粉碎,然后混合造粒。

本设计就是为生物煤的生产提供原煤的干燥设备。

沈阳某厂家生产生物煤,要求把含水量15%的精煤加尾煤的混合煤干燥成含水量小于或等于3%;处理量是3t/h。

重点要求处理后的煤含水量一定不能大于3%对于煤的干燥,在我国也有不少应用,50~60年代所用的转筒式、管式、洒落(竖井)式干燥机。

70~80年代我进引进了沸腾床式,螺旋式以及不久前研制的NXG(内部新结构)型转筒式干燥器,取代了一些老设备,效果良好。

针对本设计的实际应用性,考虑到燃料煤的市场价格较低,生物煤的成本就不能高,否则将会大大影响市场销售。

生物煤之所以没有能够得到普及推广,一个不可忽视的重要问题就是生产成本高导致价格市场价格高。

所以本设计在完成干燥任务的基础上,着重考虑经济性,降低生产成本,为生物煤的推广打下基础为环保事业作出贡献。

1.1干燥技术的概括

干燥的目的是除去某些原料、半成品中的水分和溶剂,干燥方法有三类:

机械除湿法、加热干燥法、化学除湿法。

机械除湿法,是用压榨机对湿物料加压,将其中一部分水分挤出。

物料中除去的水分量主要决定于施加压力的大小。

物料经机械除湿后仍保留很高的水分,一般为40%~60%左右粒状物料或不许受压的物料可用离心机脱水,经离心机除去水分后,残留在物料中的水分为5%~10%左右。

其他,还有各种类型的过滤机,也是机械除湿法常用的设备。

机械除湿法只能除去物料中部分水分,结合水分仍残留在物料中。

因此,物料经机械除湿后含水量仍然很高,一般不能达到化学工艺上所要求的较低的含水量。

加热干燥法,实际化学工业中常用的干燥方法,它借助热能加热物料、气化物料中的水分。

除去1kg的水分,需要消耗一定的热量。

例如用空气来干燥物料时。

空气预先被加热,送入干燥器。

物料经过加热干燥,能够除去物料中的水分,形成水蒸气,并随空气带出干燥器。

物料经过加热干燥,能够除去物料中的结合水分,达到化学工艺上所要求的含水量。

化学除湿法,是利用吸湿剂除去气体、液体和固体物料中少量的水分。

由于吸湿剂的除湿能力有限,仅用于除去物料中的微量水分,生产中应用极少。

工业中固体物料的干燥,一般上先用机械除湿法,除去物料中大量的非结合水分,在用加热干燥法除去残留的部分(包括非结合水分和结合水分)。

1.2干燥技术发展的总趋势

1、干燥设备研制向专业化方向发展;

干燥设备应用极广,需求量大。

2、干燥设备的大型化、系列化和自动化;

从干燥技术经济的观点来看,大型化的装置,具有原材料消耗低、能量消耗少、自动化水平高、生产成本低的特点。

设备系列化,可对不同生产规模的的工厂及时提供成套设备和部件,具有投产快维修容易的特点。

3、改进干燥设备,强化干燥过程:

a改造设备内物料的流动状况(或干燥介质的流动力学状况),强化和改造干燥过程。

b增添附属装置,改善干燥器的操作扩大干燥设备的使用范围。

4、采用新的干燥方法及组合干燥方法;

5、降低干燥过程中能量的消耗:

a对现有的干燥设备,加强管理。

b改善设备的保温。

c防止残产品的过度干燥

d减少被干燥物料的初水分含量。

c回收被废气带走的热量。

f提高干燥器的进口空气温度。

g采用过热蒸汽干燥。

6、闭路开发循环干燥流程的开发和应用:

7、消除干燥所造成的公害问题;

8、粉尘回收、减少风机产生的噪音。

1.3干燥器的分类及选型

1.3.1干燥器的分类

干燥器有很多种分类方式:

(1)按照干燥器的操作压力可分为长压式和真空式;

(2)按照干燥器的的操作方式可分间歇操作式和连续操作式;

(3)按照被干燥物料的状态可分为块状物料、带状物料、粒状物料、膏状物料、溶液或浆状物料干燥器等;

(4)按照干燥器供给物料热量的方法可分为传导加热干燥器、对流加热干燥器、辐射加热干燥器、高频加热干燥器等。

(5)按照干燥器使用干燥介质可分为空气、烟道气、过热水蒸气、惰性气体为干燥介质的干燥器等;

(6)按照干燥器的构造可分为喷雾干燥器、硫化床干燥器、气流干燥器回转圆筒干燥器、滚筒干燥器、各种箱式干燥器等;

(7)最近有一种新的分类方法,把干燥器分为两大类、五小类,两大类是绝热干燥过程和非绝热干燥过程。

绝热干燥过程又分为两类:

一类是小颗粒物料干燥器,例如喷雾、气流干燥器、硫化床干燥器、移动床干燥器及回转圆筒干燥器等。

二是块状物料干燥器,例如箱式干燥器中的洞道式干燥器、多带式及带式干燥器等。

非绝热过程,又可分为三小类:

真空干燥、传导传热干燥、辐射传热干燥,其特点是非绝热系统

1.3.2干燥器的选型

干燥器的选型,一般要考虑多种因素,如湿物料的状态、性质,干燥产品的要求(产品终湿含量、结晶形状及光泽等),以产量的大小以及所采用的热源等为出发点,结合干燥器的分类,参考干燥器的选型表(表1.1)确定所适合干燥器的类型。

但是对于炼焦、低温干馏,煤的气化以及特殊用处的燃烧煤粉,为了改善其使用性能(提高发热量、改善研磨性能)需要进行干燥。

在选型时可根据物料是块状,又是大量连续生产的,“查干燥选型表”可以采用气流干燥、回转圆筒干燥器、单室硫化床干燥器、竖式(移动床)硫化床干燥器等。

又如,涤纶切片的干燥,根据物料的状态、处理方式可用气流干燥器、回转圆筒干燥器、多成硫化床干燥器、卧式硫化床干燥器等。

至于选用何种干燥器一方面可借鉴目前生产采用的设备,另一方面,可利用干燥设备的最新发展选择适合该任务的新设备。

如果这两方面都无资料,就应该在实验的基础上,再经技术经济核算后在作结论,才能保证选用的干燥器在技术上可行,经济合理,产品质量优良。

本设计为生物煤的生产提供干燥的原煤,物料为块状,需大量连续生产,根据设计

的要求,参考干燥器的选型表摘自[11],选择回转圆筒干燥方式。

1.4回转圆筒干燥器的特性

回转圆筒干燥器的流程如下:

它由低速旋转的倾斜圆筒(筒内壁安装有翻动物料的各式抄板)及燃烧炉、加热器、旋风分离器、洗涤器等主要设备构成。

并流操作时,湿物料从回转圆筒高的一端加入,干燥用烟道气与物料并流进入,湿物料在抄板的作用下,把物料分散在干燥用的烟道气中,同时向前移动,物料在移动中直接从气流中获得热量,使水分汽化,达到干燥的目的,直接回转圆筒干燥器低的一端卸出产品。

回转圆筒干燥器内,物料与气流的流动方向,随物料的性质和产品要求的最终湿含量而定。

通常回转圆筒干燥器采用逆流操作。

逆流操作时,干燥器内的传热与传质推动力比较均匀,适用于不允许快速干燥的非热敏性物料。

一般逆流操作的干燥产品的含水量较低。

并流操作只适用于含水量较高,允许干燥速度快,不分解,在干燥完成时不能耐高温的热敏性物料。

对于耐高温及清洁度没要求的矿产品、粘土及耐火材料等,可用烟道气为干燥介质;对于产品清洁度要求高的物料,则可采用热空气作干燥介质。

干燥介质的温度可以在100~1400℃范围内。

如果气体进口温度为200℃湿物料的含水量较高,回转圆筒干燥器的容积汽化强度为2.8×10~4.2×10㎏(水)/(s·m)(干燥器),热效率为30%~50%左右;若气体进口温度为500℃,容积汽化强度在9.7㎏(水)/(s·m)(干燥器),热效率约为60%左右。

回转圆筒干燥器的抄板如果设计合理,可使物料粒子90%处于悬浮状态,回转圆筒干燥器的操作气流,与粒子的物性和形状大小有关,一般粒子直径约为1mm时。

气流可取0.3~1m/s,若粒子直径在5mm左右,气流可取3~4m/s,回转圆筒

干燥器的容积传热系数约为161~233W/(m·℃)。

回转筒干燥器在化学工业中,广泛地应用于各种粒状物料和小块物料的干燥,如硫酸铵、石灰石、黄铁矿、磷酸盐等,若在转筒中的内部结构设计恰当(如在转筒的物料进口端挂上链条等)还可用于膏状物料的干燥。

由于转筒的转速可在1~10r/min和倾角可在2~10范围内调节,因此可以调节物料在干燥过程中的停留时间,所以被干燥物料的含水量范围广泛。

回转圆筒干燥器直径约为0.3~5.2m,长达20m左右,由于转速很低,回转线速度约为0.2~0.3m/s,流体阻力小,鼓风机动力消耗少,操作连续,生产能力适用范围大。

其缺点是结构复杂,钢材消耗多,设备占地面积大。

1.5回转圆筒干燥器在工业上的应用

回转圆筒干燥器是一种处理大量物料干燥的干燥器。

由于运转可靠、操作弹性大、适应性强、处理能力大,广泛使用于冶金、建材、轻工等部门。

目前硫酸铵、硫化碱、草酸、重铬酸钾、聚氯乙烯、二氧化锰、磷酸铵、硝酸铵、硝酸磷肥、尿素、焦亚硝酸、钠钙镁磷肥、普通过磷酸钙、重过磷酸钙、磷酸三钠、三局磷酸钠、轻质碳酸钙、氮磷复合肥料、石棉矿、磷矿、精硫矿及碳酸钙等物料的干燥,大多是用回转圆筒干燥器。

1.6回转圆筒干燥器的设计概论

回转圆筒干燥器的生产流程如下:

需要干燥的湿物料由皮带输送机或者斗式提升机送到料斗,然后经料斗的加料机构通过加料管进入进料端。

加料管的斜度要大于物料的自然倾角,以便物料顺利流入干燥器内。

干燥器圆筒是一个与水平线略成倾斜的旋转圆筒。

物料从较高的一端加入,载热体由低段进入,与物料成逆流接触,也有载热体和物料并流进入筒体的。

随着圆筒的转动,物料受重力作用运行到较低的一端。

湿物料在筒内前移过程中,直接或间接的得到了载热体的给热,使物料得以干燥,然后,在出料端经皮带机或螺旋输送机输出。

在圆筒的内壁上装有抄板,它的作用是把物料抄起来有洒下,湿物料与气流的接触面积大,以提高干燥速率并促进物料前进。

载热体一般为热空气、烟道气等。

载热体经干燥器以后,一般需经旋风除尘器将气体内所带物料捕集下来。

如需进一步减少尾气含尘量,还应用过袋式除尘器或湿法除尘器后在放空。

回转圆筒干燥器一般适用于颗粒状物料,也可用部分掺入干物料的办法干燥粘性膏状物料或含水量较高的物料,并已成功的用于溶液物料(料浆)的造粒干燥中。

国内回转圆筒干燥其直径一般在0.4~3m个别的达5m。

干燥器长度一般在2~30m,也有高达50m的。

甚至更长的。

一般L/D在6~10。

所处理的物料含水量范围为3%~25%,也有高达50%的干燥后的含水量可达到0.5%左右,甚至可以达到0.1%。

物料在干燥器内的停留时间在5min到2h。

气流速度,对粒径为1mm左右的物料,气速在0.3~1.0m/s范围,对粒径在1~5mm的物料,气速在1.2~2.2m/s范围内。

回转圆筒干燥器的优点是生产能力大、适用范围广、流体阻力小、操作上允许波动的范围较大、操作方便。

缺点是设备复杂庞大、一次性投资大、占地面积大、填充系数小、热损失较大。

回转圆筒干燥器载物料和载物体并流操作时,筒体内物料温度即使在出口处也很接近气体的湿球温度,这说明干燥过程基本上是在等速干燥阶段进行。

即水分主要从粒子表面蒸发而无降速干燥阶段。

这是因为当粒子与气流接触时,水分从表面蒸发,但当粒子埋入料层后,水分几乎停止蒸发。

这时粒子内部的水分继续想表面扩散,当粒子在漏出料层与气流接触时,粒子表面又有自由水分存在。

使粒子温度一直维持在气流的湿球温度附近。

故可认为此干燥过程仅仅是物料与气体之间的外部传热,传质过程。

筒壁和抄板与气流接触时被加热,而与物料接触时被冷却,但是由于变化周期短,温度变化幅度很小所以筒壁温度基本上可认为是一个常数。

此外由于物料对筒壁传热系数大于气体对筒壁的传热系数,故筒壁温度实际上接近料温,另外物料只有很薄的物料被加热,故此料层中心升高的温度极少。

根据许多资料表明,热传导的热量所占比例很小,只有在分格式转筒中才占30%左右。

回转圆筒干燥器中一部分热量是颗粒辐射传热,这时粒子表面接受辐射热。

在化工干燥作业中,气体温度一般不太高,故辐射的热量在最佳条件下不超过物料在干燥器中的热量的6%所以在大多数场合下,在热力计算中不予考虑。

回转干燥主要是属于对流干燥,热能以对流方式由热气体传给与气流直接接触的湿物料表面,再到表面传质物料内部这是一个传热过程。

水分从物料内部以液态或气态扩散,透过物料层而达到表面,然后水分通过物料表面的气膜而扩散到载热体的主体,这是一个传质过程。

所以干燥是由传热和传质两个过程组成,两者之间是相互联系的。

干燥过程得以进行的条件,必须使被干燥物料表层所产生的水分或其他蒸汽的压力大于载热体中水分或其他蒸汽的分压,压差越大,干燥过程进行的越迅速。

为此,载热体需及时的将汽化的水气带走,以保持一定的汽化水分的推动力。

所以,在回转圆筒干燥器中都设有鼓风机和引风机。

2设计初始参数的确定

2.1已知参数

(a)被干燥物料名称:

原煤(精煤加尾煤混合煤);

(b)产量:

G=3t/h;

(c)物料进口含水量:

=15%;

(d)物料出口含水量:

3%;

(e)流向的确定:

并流

湿物料和载热体的流向有并流和逆流两种,也有并流和逆流合用的。

注:

以上为设计题目给定的已知条件。

2.2其他所需参数的确定

 2.2.1并流适用于下列物料的干燥

(a)物料在湿度较大时,允许快速干燥而不会发生裂纹或焦化现象。

(b)干燥后物料不能耐高温,即产品遇高温会发生分解、氧化等变化。

(c)干燥后的物料吸湿性很小,否则干燥后的物料会从载热体中吸回水分,降低产品质量。

2.2.2逆流方式适用于下列物料

(a)物料在湿度很大时,不允许快速干燥,否则物料发生龟裂现象。

(b)干燥后的物料可以耐高温,不会发生分解氧化等现象。

(c)干燥后的物料具有很大的吸湿性。

(d)要求干燥的速度大,同时又要求物料干燥程度大。

(e)被干燥的物料为原煤,为了避免着火,采用并流操作。

在物料的入口处

干燥介质温度高,而物料的湿含量也较高,不宜发生着火现象。

(f)载热体的确定:

烟道气

载热体及其最高温度的确定在于被处理固体物料的性质及其是否允许被污染等因素。

被处理物料为原煤,不怕污染,但温度不能太高。

采用混入空气(得到适当的温度)的烟道气作为载热体,可以得到较高的体积蒸发率,还可以节省能源,降低成本。

(g)物料的视比重:

ARD=1.75t/m

真比重TRD:

褐煤:

0.8~1.35t/m

烟煤:

1.25~1.50t/m

无烟煤:

1.30~1.80t/m

考虑到作为生物煤的原料,煤质不是很好,大致介于烟煤和褐煤之间,而又无定量的比例,拟取真密度为1.25t/m,

根据经验公式:

ARD=0.2+0.78TRD(2.1)

=0.2+0.78×1.25

=1.175t/m

(h)物料粒度分级:

R50mm

煤炭粒度分级:

摘自文献[8]

表2.1烟煤和无烟煤的粒度等级

粒度名称

粒度(mm)

特大块

>100(<300)

大块

>50~100

混大块

>50

中块

>25~50,>25~80

小块

>13~25

混中块

>13~50,13~80

混块

>13,>25

混粒煤

>6~25

粒煤

>6~13

混煤

<50

末煤

<13,<50

混煤

<6

表2.2褐煤粒度分析

粒度名称

粒度(mm)

特大块

>100

大块

>50~100

混大块

>50

中块

>25~50,>25~80

小块

>13~25

末煤

<13,<25

此外,为方便设备的设计和操作,排除大块煤的处理情况(须在前期做预处理),被干燥设备处理粒度<50的煤特殊情况另作处理。

(i)煤的比热:

C=0.4cal/(g·℃)

室温下的煤的比热范围在0.2~0.4cal/(g·℃)温度在0℃~350℃之间,比热随温度的增加而增加,在350℃~1000℃之间随温度的增加而降低。

由湿物料的干燥过程分析可知,干燥过程中煤的温度接近气流的湿球温度,不会很高(介于0℃~350℃之间)。

考虑到温度比室温要高一些,拟取C=0.4cal/(g·℃)

原煤的堆积比重:

γ=0.81t/m

表2.3常用散料特征

物料名称

堆积密度(t/m)

烟煤

0.75

褐煤

0.66

无烟煤(粒度<12)

0.88

煤灰

0.61

无烟煤(统煤)

1.0~1.25

厂家物料的大致状况:

粒度小于12mm的占3/5左右,粒度在12~50mm的占2/5,煤质介于烟煤和褐煤之间。

取γ=(0.75+0.66)×2/5×1/2+0.88×3/5=0.81t/m

(j)物料的入口温度=10℃

此即工作的环境问题:

厂家在沈阳。

因适应北方的各种温度,但是冰冻的情况例外,另作处理。

初取=10℃。

物料的出口温度=75℃。

(k)干燥介质进口温度:

t=600℃

(l)干燥介质出楼温度:

t=80℃

以上参数[(11)(12)(13)(14)]的选择参考现有的煤用回转圆筒干燥器的操作参数确定。

(m)气流速度:

3kg/s·m

圆筒截面气流速度一般为0.55~5.5kg/s·m

表2.4粒子大小和密度与截面气流速度的关系

堆积密度kg/m

粒子大小

350

1000

1400

1800

2200

0.3~2

0.5~1

2~5

3~7.5

4~8

5~10

>2

1~3

3~5

4~8

6~10

7~12

摘自文献[15]

被干燥物料的堆积密度为810kg/m小于1000kg/m粒度大于2,查表,拟取气流速度为3kg/s·m。

(n)掺入冷空气的湿含量:

x=0.00065kg水/kg干空气。

(o)掺入冷空气的温度:

10℃

空气干燥冷空气的含量较低,取0.0065kg水/kg干空气(参考资料《鞍钢工业炉设计资料》有关烟道气与空气混合气的计算)。

冷空气的温度,大致取平均气温10℃。

(p)燃烧原料:

重油

厂家推荐重油,选用密度较大发热量较低的重油C造价相对较低,还可以在降低成本。

(q)重油的有关参数

密度:

0.93~1.00g/cm化学成分(%质量):

C83.03、H:

10.48、O:

0.48、NO:

41、S:

3.5、HO:

2、灰粉:

0.1;

发热量(kcal/kg):

(高)10400、(低)9760;

燃料理论空气量(m/kg):

10.3;

燃料气量(m/kg):

CO:

1.549、HO:

1.176;SO:

0.0245、N:

8.15;计:

10889;最大CO:

16.34。

2.3混合气的参数计算

烟道气的入口温度初步定为600℃,新鲜空气的温度取环境温度10℃,1kg重油C燃烧生成气体总量为10.889m,烟道气的比热容1.26kj/(m·℃),重油C的发热量按保守算法取9760kcal/kg=9760×4.2kj/kg,设燃烧1kg重油需要加入新鲜空气量为Wm。

计算则9760×4.2×1=(W+10.889)×1.26×(600-10)由文献[15]可知。

得:

ω=-10.889=55.141-10.889=44.252m

则:

冷空气的百分比为×100%=80.25%

烟道气的百分比为×100%=19.75%

混合气的湿含量:

x=湿气体

查高温烟道气的1—X图,可得湿球温度为t=66.5℃,考虑到干燥过程中有降速干燥阶段,物料有升温,物料出口温度定为75℃,干燥介质的出口温度定为80℃。

3物料衡算和热量衡算

在干燥的任务给定后,进行物料衡算和热量衡算,来解决去除多少湿分,消耗多少干燥介质,需要多少热量定额问题。

3.1水分蒸发量

已知以产品来表示的产量为G=3t/h=3000kg/h=0.84kg/s

已知物料进口含水量和出口含水量为ω=15%、ω=3%

转换为以湿物料来表示的产量G=0.84(3.1)

将湿基含水量换算成为干基含水量:

c=

c=

绝干物料量G:

G=G(1-)=0.84(1-0.15)=0.816kg/s(3.2)

则水分蒸发量:

W=G(c-c)=0.816(0.176-0.031)=0.12kg/s(3.3)

3.2空气消耗量

已经查得热气体的湿球温度t=66.5℃,另外已知物料的比热容C=0.4kcal/(kg·℃),=10℃,=75℃,t=80℃,由此无法求出离开干燥器的气体含水量x,所以要有热量衡算求出空气消耗量L(kg/s)。

(水的比热C=1kcal/(kg·℃))

(1)蒸发水分量所需的热量q:

q=W(595+0.46·t-θ)(3.4)

=0.12(595+0.4680-10)

=74.62kcal

(2)物料升温(=10℃升到=75℃)所需的热量q:

q=G·C(θ-θ)(3.5)

=G·(C+C·C)·(θ-θ)

=0.816(0.4+0.031)(75-10)

=22.86kcal

(3).热损失q:

q=0.2(q+q)

=0.2(74.62+22.86)

=19.5kcal

需要的总热量:

q=q+q+q

=74.62+22.86+19.5=116.98lcal

(4)空气的消耗量

L=(3.6)

==0.91(kg/s)

离开干燥器的气体含水量:

x=(3.7)

由此查得露点t=58℃,气体温度80℃,露点温度58℃—22℃,满足要求。

(参照文献[15],实际设计时,在干燥器的出口气体比露点温度约高15℃左右)。

4规格参数的设计和确定

4.1筒体直径

回转圆筒的直径可根据气体的最大流量计算。

气体离开回转圆筒干燥器时的流量为:

=L=0.91(1+0.149)=1.047(kg湿气体/s)(4.1)

D===0.67m。

取D=1.0m。

(4.2)

式中:

空气消耗量L=0.91kg/s;尾气湿度x=0.149kg水/kg干空气;

气流湿度v=3kg/(m·℃)。

4.2容积散热系数

===0.081kcal/(m·℃)(4.3)

式中:

—离开转筒式的流量,=1.047kg(湿气体)/s;

F—圆筒横截面积,F=D,(D=1m)。

4.3筒体长度

物料在转筒的每一部分都有水分蒸发,为了计算方便,将物料在转筒中的移动分成三段,给预热段、蒸发段、加热段。

4.3.1预热段长度z

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2