STM32 GPIO使用超强总结.docx
《STM32 GPIO使用超强总结.docx》由会员分享,可在线阅读,更多相关《STM32 GPIO使用超强总结.docx(21页珍藏版)》请在冰点文库上搜索。
STM32GPIO使用超强总结
STM32 GPIO使用
操作步骤:
1. 使能GPIO对应的外设时钟
例如:
//使能GPIOA、GPIOB、GPIOC对应的外设时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_GPIOB |RCC_APB2Periph_GPIOC , ENABLE);
2. 声明一个GPIO_InitStructure结构体
例如:
GPIO_InitTypeDef GPIO_InitStructure;
3. 选择待设置的GPIO管脚
例如:
//选择待设置的GPIO第7、8、9管脚位,中间加“|”符号
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 |GPIO_Pin_8 |GPIO_Pin_9;
4. 设置选中GPIO管脚的速率
例如:
//设置选中GPIO管脚的速率为最高速率2MHz
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; //最高速率2MHz
5. 设置选中GPIO管脚的模式
例如:
//设置选中GPIO管脚的模式为开漏输出模式GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出模式
6. 根据GPIO_InitStructure中指定的参数初始化外设GPIOX
例如:
GPIO_Init(GPIOC, &GPIO_InitStructure);
7.其他应用
例:
将端口GPIOA的第10、15脚置1(高电平)
GPIO_SetBits(GPIOA, GPIO_Pin_10 |GPIO_Pin_15);
例:
将端口GPIOA的第10、15脚置0(低电平)
GPIO_ResetBits(GPIOA, GPIO_Pin_10 |GPIO_Pin_15);
GPIO寄存器:
寄存器 描述
CRL 端口配置低寄存器
CRH 端口配置高寄存器
IDR 端口输入数据寄存器
ODR 端口输出数据寄存器
BSRR 端口位设置/复位寄存器
BRR 端口位复位寄存器
LCKR 端口配置锁定寄存器
EVCR 事件控制寄存器
MAPR 复用重映射和调试
I/O 配置寄存器
EXTICR 外部中断线路0-15配置寄存器
GPIO库函数:
函数名 描述
GPIO_DeInit 将外设GPIOx寄存器重设为缺省值
GPIO_AFIODeInit 将复用功能(重映射事件控制和EXTI设置)重设为缺省值
GPIO_Init 根据GPIO_InitStruct中指定的参数初始化外设GPIOx寄存器
GPIO_StructInit 把GPIO_InitStruct中的每一个参数按缺省值填入
GPIO_ReadInputDataBit 读取指定端口管脚的输入
GPIO_ReadInputData 读取指定的GPIO端口输入
GPIO_ReadOutputDataBit 读取指定端口管脚的输出
GPIO_ReadOutputData 读取指定的GPIO端口输出
GPIO_SetBits 设置指定的数据端口位
GPIO_ResetBits 清除指定的数据端口位
GPIO_WriteBit 设置或者清除指定的数据端口位
GPIO_Write 向指定GPIO数据端口写入数据
GPIO_PinLockConfig 锁定GPIO管脚设置寄存器
GPIO_EventOutputConfig 选择GPIO管脚用作事件输出
GPIO_EventOutputCmd 使能或者失能事件输出
GPIO_PinRemapConfig 改变指定管脚的映射
GPIO_EXTILineConfig 选择GPIO管脚用作外部中断线路
库函数:
函数GPIO_DeInit
功能描述:
将外设GPIOx寄存器重设为缺省值 例:
GPIO_DeInit(GPIOA);
函数GPIO_AFIODeInit
功能描述:
将复用功能(重映射事件控制和EXTI设置)重设为缺省值 例:
GPIO_AFIODeInit();
函数GPIO_Init
功能描述:
根据GPIO_InitStruct中指定的参数初始化外设GPIOx寄存器 例:
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitTypeDef structure
GPIO_InitTypeDef定义于文件“stm32f10x_gpio.h”:
typedef struct {
u16 GPIO_Pin;
GPIOSpeed_TypeDef GPIO_Speed;
GPIOMode_TypeDef GPIO_Mode;
}
GPIO_InitTypeDef;
GPIO_Pin
该参数选择待设置的GPIO管脚,使用操作符“|”可以一次选中多个管脚。
可以使用下表中的任意组合。
GPIO_Pin_None:
无管脚被选中
GPIO_Pin_x:
选中管脚x(0--15)
GPIO_Pin_All:
选中全部管脚
GPIO_Speed
GPIO_Speed:
用以设置选中管脚的速率。
GPIO_Speed_10MHz:
最高输出速率10MHz
GPIO_Speed_2MHz:
最高输出速率2MHz
GPIO_Speed_50MHz:
最高输出速率50MHz
GPIO_Mode
GPIO_Mode:
用以设置选中管脚的工作状态。
GPIO_Mode_AIN:
模拟输入
GPIO_Mode_IN_FLOATING:
浮空输入
GPIO_Mode_IPD:
下拉输入
GPIO_Mode_IPU:
上拉输入
GPIO_Mode_Out_OD:
开漏输出
GPIO_Mode_Out_PP:
推挽输出
GPIO_Mode_AF_OD:
复用开漏输出
GPIO_Mode_AF_PP:
复用推挽输出
函数GPIO_StructInit
功能描述:
把GPIO_InitStruct中的每一个参数按缺省值填入 例:
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStruct:
GPIO_Pin:
GPIO_Pin_All
GPIO_Speed:
GPIO_Speed_2MHz
GPIO_Mode:
GPIO_Mode_IN_FLOATING
函数GPIO_ReadInputDataBit
功能描述:
读取指定端口管脚的输入
例:
u8 ReadValue;
ReadValue = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7);
函数GPIO_ReadInputData
功能描述:
读取指定的GPIO端口输入
例:
u16 ReadValue;
ReadValue = GPIO_ReadInputData(GPIOC);
函数GPIO_ReadOutputDataBit
功能描述:
读取指定端口管脚的输出
例:
u8 ReadValue;
ReadValue = GPIO_ReadOutputDataBit(GPIOB, GPIO_Pin_7);
函数GPIO_ReadOutputData
功能描述:
读取指定的GPIO端口输出
例:
u16 ReadValue;
ReadValue = GPIO_ReadOutputData(GPIOC);
函数GPIO_SetBits
功能描述:
置位指定的数据端口位
例:
将端口GPIOA的第10、15脚置1(高电平)
GPIO_SetBits(GPIOA, GPIO_Pin_10|GPIO_Pin_15);
函数GPIO_ResetBits
功能描述:
清除指定的数据端口位
例:
将端口GPIOA的第10、15脚置0(低电平)
GPIO_ResetBits(GPIOA, GPIO_Pin_10|GPIO_Pin_15);
函数GPIO_WriteBit
功能描述:
设置或者清除指定的数据端口位
例:
GPIO_WriteBit(GPIOA, GPIO_Pin_15, Bit_SET);
函数GPIO_Write
功能描述:
向指定GPIO数据端口写入数据
例:
GPIO_Write(GPIOA, 0x1101);
函数GPIO_PinLockConfig
功能描述:
锁定GPIO管脚设置寄存器
例:
GPIO_PinLockConfig(GPIOA, GPIO_Pin_0|GPIO_Pin_1);
函数GPIO_EventOutputConfig
功能描述:
选择GPIO管脚用作事件输出 例:
GPIO_EventOutputConfig(GPIO_PortSourceGPIOE, GPIO_PinSource5);
GPIO_PortSource
GPIO_PortSource用以选择用作事件输出的GPIO端口。
函数GPIO_EventOutputCmd
功能描述:
使能或者失能事件输出 例:
GPIO_EventOutputConfig(GPIO_PortSourceGPIOC, GPIO_PinSource6);
GPIO_EventOutputCmd(ENABLE);
函数GPIO_PinRemapConfig
功能描述:
改变指定管脚的映射 例:
GPIO_PinRemapConfig(GPIO_Remap_I2C1, ENABLE);
一.GPIO概述
1、共有8种模式,可以通过编程选择:
1. 浮空输入 2. 带上拉输入 3. 带下拉输入 4. 模拟输入
5. 开漏输出——(此模式可实现hotpower说的真双向IO) 6. 推挽输出
7. 复用功能的推挽输出 8. 复用功能的开漏输出
模式7和模式8需根据具体的复用功能决定。
2、专门的寄存器(GPIOx_BSRR和GPIOx_BRR)实现对GPIO口的原子操作,即回避了设置或清除I/O端口时的“读-修改-写”操作,使得设置或清除I/O端口的操作不会被中断处理打断而造成误动作。
3、每个GPIO口都可以作为外部中断的输入,便于系统灵活设计。
4、I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这有利于噪声控制。
这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。
通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。
高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。
当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。
4.1各种接口的措施:
4.1.1对于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引脚速度就够了,既省电也噪声小。
4.1.2对于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引脚速度或许不够,这时可以选用10M的GPIO引脚速度。
4.1.3对于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引脚速度显然不够了,需要选用50M的GPIO的引脚速度。
4.2 GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。
4.3 在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。
4.4 所有端口都有外部中断能力。
为了使用外部中断线,端口必须配置成输入模式。
4.5 GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。
5、所有I/O口兼容CMOS和TTL,多数I/O口兼容5V电平。
6、大电流驱动能力:
GPIO口在高低电平分别为0.4V和VDD-0.4V时,可以提供或吸收8mA电流;如果把输入输出电平分别放宽到1.3V和VDD-1.3V时,可以提供或吸收20mA电流。
7、具有独立的唤醒I/O口。
8、很多I/O口的复用功能可以重新映射。
9、GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。
此功能非常有利于在程序跑飞的情况下保护系统中其他的设备,不会因为某些I/O口的配置被改变而损坏——如一个输入口变成输出口并输出电流。
二.推挽结构
一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem- pole)输出电路(可惜,图无法贴上)。
当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。
这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。
又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。
因此,推拉式输出级既提高电路的负载能力,又提高开关速度。
供你参考。
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。
输出既可以向负载灌电流,也可以从负载抽取电流
三.开漏电路
在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。
所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。
同理,开集电路中的“集”就是指三极管的集电极。
开漏电路就是指以MOSFET的漏极为输出的电路。
一般的用法是会在漏极外部的电路添加上拉电阻。
完整的开漏电路应该由开漏器件和开漏上拉电阻组成。
组成开漏形式的电路有以下几个特点:
1. 利用 外部电路的驱动能力,减少IC内部的驱动。
当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。
IC内部仅需很下的栅极驱动电流。
如图1。
2. 可以将多个开漏输出的Pin,连接到一条线上。
形成 “与逻辑” 关系。
如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。
这也是I2C,SMBus等总线判断总线占用状态的原理。
3. 可以利用改变上拉电源的电压,改变传输电平。
如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。
这样我们就可以用低电平逻辑控制输出高电平逻辑了。
4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。
5. 标准的开漏脚一般只有输出的能力。
添加其它的判断电路,才能具备双向输入、输出的能力。
应用中需注意:
1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。
例如,某输入Pin要求由开漏电路驱动。
则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。
如图3。
2. 上拉电阻R pull-up的 阻值 决定了 逻辑电平转换的沿的速度 。
阻值越大,速度越低功耗越小。
反之亦然。
Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。
输出能力看IC内部输出极N管P管的面积。
和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。
push-pull是现在CMOS电路里面用得最多的输出级设计方式。
at91rm9200 GPIO 模拟I2C接口时注意!
!
四.OC、OD
集电极开路门(集电极开路 OC 或源极开路OD)
open-drain是漏极开路输出的意思,相当于集电极开路(open-collector)输出,即ttl中的集电极开路(oc)输出。
一般用于线或、线与,也有的用于电流驱动。
open-drain是对mos管而言,open-collector是对双极型管而言,在用法上没啥区别。
开漏形式的电路有以下几个特点:
1.利用外部电路的驱动能力,减少IC内部的驱动。
或驱动比芯片电源电压高的负载. 2. 可以将多个开漏输出的Pin,连接到一条线上。
通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。
这也是I2C,SMBus等总线判断总线占用状态的原理。
如果作为图腾输出必须接上拉电阻。
接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。
如果要求速度高电阻选择要小,功耗会大。
所以负载电阻的选择要兼顾功耗和速度。
3.可以利用改变上拉电源的电压,改变传输电平。
例如加上上拉电阻就可以提供TTL/CMOS电平输出等。
4.开漏Pin不连接外部的上拉电阻,则只能输出低电平。
一般来说,开漏是用来连接不同电平的器件,匹配电平用的。
5.正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。
这种输出的主要目的有两个:
电平转换和线与。
6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。
这样你就可以进行任意电平的转换了。
7.线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。
(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。
)
8.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。
因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。
所以如果对延时有要求,则建议用下降沿输出。
五.线或逻辑与线与逻辑
在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上.
因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器, 就是或 OR 逻辑.
注:
个人理解:
线与,接上拉电阻至电源。
(~A)&(~B)=~(A+B),由公式较容易理解线与此概念的由来 ;
如果用下拉电阻和 PNP 或 PMOS 管就可以构成与非 NAND 逻辑, 或用负逻辑关系转换与/或逻辑.
注:
线或,接下拉电阻至地。
(~A)+(~B)=~(AB);
这些晶体管常常是一些逻辑电路的集电极开路 OC 或源极开路 OD 输出端. 这种逻辑通常称为线与/线或逻辑, 当你看到一些芯片的 OC 或 OD 输出端连在一起, 而有一个上拉电阻时, 这就是线或/线与了, 但有时上拉电阻做在芯片的输入端内.
顺便提示如果不是 OC 或 OD 芯片的输出端是不可以连在一起的, 总线 BUS 上的双向输出端连在一起是有管理的, 同时只能有一个作输出, 而其他是高阻态只能输入
STM32引脚说明
GPIO是通用输入/输出端口的简称,是STM32可控制的引脚。
GPIO的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。
STM32F103ZET6芯片为144脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为GPIOA、GPIOB、GPIOC、GPIOD、GPIOE、GPIOF、GPIOG,同时每组GPIO口组有16个GPIO口。
通常简略称为PAx、PBx、PCx、PDx、PEx、PFx、PGx,其中x为0-15。
STM32的大部分引脚除了当GPIO使用之外,还可以复用位外设功能引脚(比如串口),这部分在【STM32】STM32端口复用和重映射(AFIO辅助功能时钟) 中有详细的介绍。
GPIO基本结构
每个GPIO内部都有这样的一个电路结构,这个结构在本文下面会具体介绍。
这边的电路图稍微提一下:
保护二极管:
IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。
当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。
但是尽管如此,还是不能直接外接大功率器件,须加大功率及隔离电路驱动,防止烧坏芯片或者外接器件无法正常工作。
P-MOS管和N-MOS管:
由P-MOS管和N-MOS管组成的单元电路使得GPIO具有“推挽输出”和“开漏输出”的模式。
这里的电路会在下面很详细地分析到。
TTL肖特基触发器:
信号经过触发器后,模拟信号转化为0和1的数字信号。
但是,当GPIO引脚作为ADC采集电压的输入通道时,用其“模拟输入”功能,此时信号不再经过触发器进行TTL电平转换。
ADC外设要采集到的原始的模拟信号。
这里需要注意的是,在查看《STM32中文参考手册V10》中的GPIO的表格时,会看到有“FT