实验一 交叉耦合滤波器设计与仿真.docx

上传人:b****2 文档编号:2192272 上传时间:2023-05-02 格式:DOCX 页数:13 大小:118.75KB
下载 相关 举报
实验一 交叉耦合滤波器设计与仿真.docx_第1页
第1页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第2页
第2页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第3页
第3页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第4页
第4页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第5页
第5页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第6页
第6页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第7页
第7页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第8页
第8页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第9页
第9页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第10页
第10页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第11页
第11页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第12页
第12页 / 共13页
实验一 交叉耦合滤波器设计与仿真.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

实验一 交叉耦合滤波器设计与仿真.docx

《实验一 交叉耦合滤波器设计与仿真.docx》由会员分享,可在线阅读,更多相关《实验一 交叉耦合滤波器设计与仿真.docx(13页珍藏版)》请在冰点文库上搜索。

实验一 交叉耦合滤波器设计与仿真.docx

实验一交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真

一、实验目的

1.设计一个交叉耦合滤波器

2.查看并分析该交叉耦合滤波器的S参数

二、实验设备

装有HFSS软件的笔记本电脑一台

三、实验原理

具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。

这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。

交叉耦合带通滤波器的等效电路如下图所示。

在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik(k=1,2,3,…,N)表示各谐振腔的回路电流,Mij表示第i个谐振腔与第k个谐振腔之间的互耦合系数(i,j=1,2,…,N,且i≠j)。

在这里取ω0=1,即各谐振回路的电感L和电容C均取单位值。

Mkk(k=1,2,3,…,N)表示各谐振腔的自耦合系数。

n腔交叉耦合带通滤波器等效电路如下图所示:

这个电路的回路方程可以写为

或者写成矩阵方程的形式:

其中,

一般来讲,频率都归一成1,即ω≈ω0=1,则

其中E为电压矩阵,I为电流矩阵,Z为阻抗矩阵,

U0是N×N阶单位矩阵。

M是耦合矩阵,它是一个N×N阶方阵,形式如下:

其中对角线上的元素代表每一个谐振腔回路的自耦合,表示每一个谐振腔的谐振频率fi与中心频率f0之间的偏差。

(在同步调谐滤波器中,认为它们的值都取零)。

R矩阵是N×N阶方阵,除R(1,1)=R1,R(N,N)=R2为非零量以外,其它元素值都等于零。

那么,这个电路的传输函数可以写为

其中,D(cofZ1N)表示Z矩阵第一行、第N列元素的代数余子式,D(Z)表示Z矩阵的行列式。

相应地,通带增益频响特性为

取n=3,可得3×3阶耦合矩阵M:

3阶椭圆函数滤波器的低通增益函数修正为:

其中

上述方法中的等波纹系数也必须进行修正,修正方法有下列两种:

(1)取

导数为零的点,得到(-1,1)内各点的最大值α,有:

(2)令标准椭圆函数与修正后的椭圆函数在边带上的衰减相等,从而求得修正后的纹波系数:

四、实验内容

设计一个交叉耦合滤波器,其指标要求如下:

中心频率:

910MHz

带宽:

40MHz

带内反射:

<20dB

带外抑制:

在MHz处>20dB

此滤波器通过三腔微带结构(环形谐振器)实现。

选用介质板的相对介电常数为εr=,厚度为h=。

腔体为半波长方腔结构,腔间耦合程度通过腔间距离来控制,使得滤波器谐振频率在910MHz。

最终获得反射系数和参数系数曲线的仿真结果。

五、实验步骤

1.建立新工程

了方便建立模型,在Tool>Options>HFSSOptions中讲DuplicateBoundarieswithgeometry复选框选中。

2.将求解类型设置为激励求解类型:

(1)在菜单栏中点击HFSS>SolutionType。

(2)在弹出的SolutionType窗口中

(a)选择DrivenModal。

(b)点击OK按钮。

3.设置模型单位

(1)在菜单栏中点击3DModeler>Units。

(2)在设置单位窗口中选择:

mm。

4.建立滤波器模型

(1)首先建立介质基片

(a)在菜单栏点击Draw>Box,这样可以在3D窗口中创建长方体模型。

(b)输入长方体的起始坐标:

X:

-20,Y:

-35,Z:

0;按回车键结束输入。

(c)输入长方体X,Y,Z三个方向的尺寸,即dX:

40,dY:

70,dZ:

;按回车键结束输入。

(d)在特性(Property)窗口中选择Attribute标签,将该名字修改为Substrate,透明度(transparent)改为。

(e)点击Material对应的按钮,在弹出的材料设置窗口中点击AddMaterial按钮,添加介电常数为的介质,将其命名为sub。

点击OK结束。

(2)建立Ring_1

(a)在菜单栏中点击Draw>Rectangle,创建矩形模型。

(b)在坐标输入栏中输入起始点的坐标:

X:

0,Y:

0,Z:

0按回车键。

(c)在坐标输入栏中输入长、宽:

dX:

10,dY:

-25,dZ:

0按回车键。

(d)在特性(Property)窗口中选择Attribute标签,将该名字修改为Ring_1。

(e)在菜单栏中点击Draw>Rectangle,创建矩形模型。

(f)在坐标输入栏中输入起始点的坐标:

X:

,Y:

,Z:

0按回车键。

(g)在坐标输入栏中输入长、宽:

dX:

,dY:

,dZ:

0按回车键。

(h)在特性(Property)窗口中选择Attribute标签,将该名字修改为Inner。

(i)同样地,建立矩形Cut_1,输入的坐标为:

X:

4,Y:

-25,Z:

0,按回车键结束。

dX:

2,dY:

,dZ:

0,按回车键结束。

(j)用Ring_1将Inner和Cut_1减去,使之成为一个开口的矩形环。

在菜单栏中点击Edit>Select>ByName,在弹出的窗口中利用Ctrl键选择Ring_1、Inner和Cut_1。

(k)在菜单栏中点击Modeler>Boolean>Subtract,在Subtract窗口中作如下设置:

BlankParts:

Ring_1

ToolParts:

Inner,Cut_1

Clonetoolobjectsbeforesubtract复选框不选,点击OK结束设置。

(3)移动Ring_1

(a)将Ring_1沿Y轴作微小的移动。

在菜单栏中点击Edit>Select>ByName,在弹出的窗口中选择Ring_1。

(b)在菜单栏中点击Edit>Arrange>Move,在坐标输入栏中输入移动的向量。

X:

0,Y:

0,Z:

0

dX:

0,dY:

,dZ:

0,按回车键结束输入。

(4)创建Ring_2

(a)Ring_2与Ring_1沿X轴对称,因此可以用对称复制操作创建Ring_2。

在菜单栏中点击Edit>Select>ByName,在弹出的窗口中选择Ring_1。

(b)在菜单栏中点击Edit>Duplicate>Mirror,输入向量。

X:

0,Y:

0,Z:

0;d

X:

0,dY:

1,dZ:

0,按回车键结束。

(c)在操作历史树中双击新建的矩形,在特性窗口中重新将其命名为Ring_2。

(5)创建Ring_3

(a)在菜单栏中点击Draw>Rectangle。

(b)在右下角的坐标输入起始点坐标,即X:

0,Y:

,Z:

0按回车键结束输入。

(c)输入矩形边长,即dX:

-10,dY:

25,dZ:

0按回车键结束输入。

(d)在特性(Property)窗口中选择Attribute标签,将该矩形的名字修改为Ring_3。

(e)在菜单栏中点击Draw>Rectangle。

(f)在右下角的坐标输入栏中输入起始点位置坐标,即X:

,Y:

,Z:

0按回车键结束输入。

(g)输入矩形边长dX:

,dY:

,Z:

0按回车键结束输入。

(h)在特性(Property)窗口中选择Attribute标签,将该矩形的名字修改为Inner_2。

(i)同样的,建立矩形Cut_2,输入的坐标分别为X:

0,Y:

,Z:

0;dX:

,dY:

,dZ:

0按回车键结束输入。

(j)在菜单键栏中点击Edit>Select>ByName,在弹出的窗口中利用Ctrl键选择Ring_3、Inner_2和Cut_2。

(k)用Ring_3将Inner_2和Cut_2减去,使之成为一个开口的矩形环。

在菜单栏中点击3DModeler>Boolean>Subtract,在Subtract窗口中做以下设置:

BlankParts:

Ring_3

ToolParts:

Inner_2,Cut_2

Clonetoolobjectsbeforesubtract复选框不选;点击OK按钮。

(6)移动Ring_3

(a)在菜单栏中点击Edit>Select>ByName,在弹出的窗口中选择Ring_3。

(b)在菜单栏中点击Edit>Arrange>Move,在坐标输入栏中输入移动的向量,即X:

0,Y:

0,Z:

0;dX:

,dY:

0,dZ:

0按回车键结束输入。

(7)创建Feedline_1

创建滤波器的馈线结构,该馈线由特性阻抗不同的两段微带传输线组成。

(a)在菜单栏中点击Draw>Rectangle。

(b)在右下角的坐标输入栏中输入X:

,Y:

,Z:

0;dX:

,dY:

25,dZ:

0按回车键结束。

(c)创建矩形后,在弹出的特性(Property)窗口中选择Attribute标签,将名字修改为F_1。

(d)在菜单栏中点击Draw>Rectangle。

(e)在右下角的坐标输入栏中输入X:

,Y:

,Z:

0;dX:

1,dY:

,dZ:

0按回车键结束。

(f)创建矩形后,在弹出的特性(Property)窗口中选择Attribute标签,将名字修改为F_2。

(g)在菜单键栏中点击Edit>Select>ByName,在弹出的窗口中利用Ctrl键选择F_1和F_2。

(h)在菜单栏中点击3DModeler>Boolean>Unit,在历史操作树中,双击新组合的模型F_1,在特性窗口中将其命名为Feedline_1。

(8)创建Feedline_2

同样的,Feedline_2与Feedline_1沿X轴对称,因此也可以通过对称复制操作来创建。

(a)在菜单栏中点击Edit>Select>ByName,弹出的窗口中选择Feedline_1。

(b)在菜单栏中点击Edit>Duplicate>Mirror,输入向量,即X:

0,Y:

0,Z:

0;dX:

0,dY:

1,dZ:

0按回车键结束输入。

(c)在操作历史树中双击新建的馈线,在特性窗口中将其重新命名为Feedline_2。

(9)组合Ring_1、Ring_2、Ring_3、Feedline_1和Feedline_2

(a)在菜单键栏中点击Edit>Select>ByName,在弹出的窗口中利用Ctrl键选择Ring_1、Ring_2、Ring_3、Feedline_1和Feedline_2。

(b)在菜单栏中点击3DModeler>Boolean>Unit。

(c)在历史操作树中,双击新组合的模型,在特性窗口中将其命名为Trace。

5.创建端口

微带滤波器采用集总端口激励,因此需要首先创建供设置端口用的矩形,该矩形连接了馈线与地板。

(1)创建port_1

(a)在菜单栏中点击3DModeler>GridPlane>XZ。

(b)在菜单栏中点击Draw>Rectangle,在坐标输入栏中输入如下坐标:

X:

,Y:

-35,Z:

0;dX:

1,dY:

0,dZ:

按回车键结束输入。

(c)将其命名为port_1。

(d)在菜单栏中点击Edit>Select>ByName。

在弹出的窗口中选择port_1。

(e)在菜单栏点击HFSS>Excitations>Assign>LumpedPort,在LumpedPort窗口的General标签中,将该端口命名为p1,然后点击Next。

(f)在Modes标签的IntegrationLine中点击None,选择NewLine,在坐标栏中输入以下坐标:

X:

,Y:

-35,Z:

;dX:

0,dY:

0,dZ:

按回车键结束输入。

点击Next直至结束。

(2)创建port_2

(a)在菜单栏中点击EditObjects>Select>ByName,在弹出的窗口中选择Port_1。

Port_2与port_1也以X轴对称,因此可以利用对称复制创建。

(b)在菜单栏中点击Edit>Duplicate>Mirror,输入即X:

0,Y:

0,Z:

0;dX:

0,dY:

1,dZ:

0。

按回车键结束。

(c)在操作历史书中双击新建的端口,在特性窗口中将其重新命名为port_2。

由于在建立工程的第一步就设置了复制边界选项,因此在复制创建port_2之后,端口上设置的激励也一同复制了。

6.创建Air

(a)在菜单栏中点击Draw>Box或者在工具栏中点击按钮。

(b)在右下角的坐标输入栏中输入长方体的起始位置坐标,即X:

-70,Y:

-90,Z:

-50按回车键结束输入。

(c)输入长方体的X、Y、Z三个方向的尺寸,即dX:

140,dY:

180,dZ:

100按回车键结束输入。

(d)在特性(Property)窗口中选择Attribute标签,将该长方体的名字修改为Air。

7.设置边界条件

边界条件包括理想金属边界条件你和辐射边界条件。

滤波器的导带部分、介质基片下底面地板要设置为理想金属边界。

设置辐射边界是为了截断求解区域。

(1)设置理想金属边界条件。

(a)在菜单栏中点击Edit>Select>ByName,在弹出的窗口中选择Trace。

(b)在菜单栏中点击HFSS>Boundaries>Assign>PerfectE。

在弹出的对话框中将其命名为Perf_Trace,点击OK按钮。

(c)在菜单栏中点击Edit>Select>Faces,这是应经将鼠标所选设置为选择模型的表面了。

然后点击ByName,选择Substrate,选择其下地面,选择的时候在3D窗口中进行观察,确保选择导下底面(即8)。

(d)在菜单栏中点击HFSS>Boundaries>Assign>PerfectE,在弹出的对话窗中将其命名为Perf_Ground,点击OK按钮。

(2)设置辐射边界条件

(a)在菜单栏中点击HFSS>Boundaries>Object,然后点击ByName,选择Air。

(b)在菜单栏中点击HFSS>Boundaries>Assign>Radiation,在弹出的对话框中点击OK结束。

8.为该问题设置求解频率及扫频范围

(1)设置求解频率

(a)在菜单栏中点击HFSS>AnalysisSetup>AddSolutionSetup。

(b)在求解设置窗口中作如下设置:

SolutionFrequency:

910MHz;MaximumNumbersofPasses:

20;MaximumDeltaSperPass:

;点击OK按钮。

(2)设置扫频

(a)在菜单栏中点击HFSS>AnalysisSetup>AddSweep。

(b)选择Setup1,点击OK。

(c)在扫频设置窗口中作如下设置:

SweepType:

Fast;FrequencySetupType:

LinearCount;Start:

700MHz;Stop:

1100MHz;Count:

501。

(d)将SaveField复选框选中,点击OK按钮。

9.保存工程

在菜单栏中点击File>SaveAs,在弹出的窗口中将该工程的命名为shiyan1,并选择路径保存。

10.优化处理

(1)点击HFSS>AnalyzeAll

(2)点击HFSS>Result>CreateModalSolutionDataReport

(3)选择RectanglePlot

(4)在Trace窗口中设置:

Solution:

Sweep1:

Sweep1;Domain:

Sweep;点击Y标签,选择:

Category:

Sparameter;Quantity:

S(p1,p1)、S(p2,p1);Function:

dB。

点击NewReport按钮完成。

六、实验结果

仿真图如下:

滤波器的S参数曲线如下:

由上图反射系数和传输系数曲线可知,中心频率910MHz,带宽40MHz的频率范围内(即890~930MHz),最大

出现在,其值为。

在842MHz的带外频点处,带外抑制大于20dB,满足一般指标要求。

七、问题思考及小结

本实验利用HFSS软件设计了一个交叉耦合滤波器,该滤波器采用三腔微带环形谐振器,其耦合矩阵为:

本实验由于创建的模型比较多,需要输入的数据比较多,所以需要足够的仔细和耐心。

在第一次实验时由于对HFSS不够熟悉且不够仔细,仿真结果差强人意,重新认真的做了一遍之后,发现结果还是出不来,经多处查资料和在论坛上发帖提问之后,才发现是装软件时少导入了一个库造成的,重新装了一遍软件并重新做一遍之后结果输出正确。

通过本次实验,我熟练的掌握了HFSS软件的基本使用方法,掌握了交叉耦合滤波器的结构及其S参数。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2