汽车座椅结构设计Word格式.doc

上传人:聆听****声音 文档编号:251809 上传时间:2023-04-28 格式:DOC 页数:48 大小:730.68KB
下载 相关 举报
汽车座椅结构设计Word格式.doc_第1页
第1页 / 共48页
汽车座椅结构设计Word格式.doc_第2页
第2页 / 共48页
汽车座椅结构设计Word格式.doc_第3页
第3页 / 共48页
汽车座椅结构设计Word格式.doc_第4页
第4页 / 共48页
汽车座椅结构设计Word格式.doc_第5页
第5页 / 共48页
汽车座椅结构设计Word格式.doc_第6页
第6页 / 共48页
汽车座椅结构设计Word格式.doc_第7页
第7页 / 共48页
汽车座椅结构设计Word格式.doc_第8页
第8页 / 共48页
汽车座椅结构设计Word格式.doc_第9页
第9页 / 共48页
汽车座椅结构设计Word格式.doc_第10页
第10页 / 共48页
汽车座椅结构设计Word格式.doc_第11页
第11页 / 共48页
汽车座椅结构设计Word格式.doc_第12页
第12页 / 共48页
汽车座椅结构设计Word格式.doc_第13页
第13页 / 共48页
汽车座椅结构设计Word格式.doc_第14页
第14页 / 共48页
汽车座椅结构设计Word格式.doc_第15页
第15页 / 共48页
汽车座椅结构设计Word格式.doc_第16页
第16页 / 共48页
汽车座椅结构设计Word格式.doc_第17页
第17页 / 共48页
汽车座椅结构设计Word格式.doc_第18页
第18页 / 共48页
汽车座椅结构设计Word格式.doc_第19页
第19页 / 共48页
汽车座椅结构设计Word格式.doc_第20页
第20页 / 共48页
亲,该文档总共48页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

汽车座椅结构设计Word格式.doc

《汽车座椅结构设计Word格式.doc》由会员分享,可在线阅读,更多相关《汽车座椅结构设计Word格式.doc(48页珍藏版)》请在冰点文库上搜索。

汽车座椅结构设计Word格式.doc

有的电动座椅使用串激电动机(如通用公司生产的某些汽车),用2个磁场线圈使电动机能作双向转动。

这种电动机一般使用继电器以控制电流方向,因此当开关换向时,可以听到继电器吸合的咔嗒声。

电动座椅使用的电动机的数量多的可达8个。

本方案是一种机械设计制造学、人体工程学与电子技术相结合的八个方向(座椅水平平行前后移动、座椅前端上下升降、座椅后端上下升降、座椅靠背的角度旋转)调节。

汽车电动座椅一般由双向电动机、传动装置和座椅调节器等组威。

传动装置包括变速器、联轴装置和电磁阀。

座椅调节器的主要部件是螺旋千斤顶和齿轮传动机构。

传动装置和座椅调节器之间用软轴连接。

通过座椅调节器实现对座椅的调节。

方案的思路就是电动座椅是利用电动机的动力来调整座椅位置、靠背的倾斜度等,自动适应不同体型的驾驶员与乘员的乘坐舒适性要求。

现代轿车的驾驶者座椅和前部成员座椅多是电动可调的,又称电动座椅。

座椅是与人接触最密切的部件,人们对轿车平顺性的评价多是通过座椅的感受作出的。

因此电动座椅是直接影响轿车质量的关键部件之一。

轿车电动座椅以驾驶者的座椅为主。

从服务对象出发,电动座椅必须要满足便利性和舒适性两大要求。

也就是说驾驶者通过键钮操纵,既可以将座椅调整到最佳位置上,使驾驶者获得最好的视野,得到易于操纵方向盘、踏板、变速杆等操纵件的便利,还可以获得最舒适和最习惯的乘坐角度。

为了满足这些要求,世界汽车生产大国的有关厂家都竞相采用机械和电子技术手段,制造出可调整的电动座椅。

现代轿车的电动座椅是由坐垫、靠背、靠枕、骨架、悬挂和调节机构等组成,其中调节机构由控制器、可逆性直流电动机和传动部件组成,是电动座椅中最复杂和最关键的部分,可逆性直流电动机必须体积小,负荷能力要大;

而机械传动部件运行时要求要有十分良好的稳定性,噪音要低。

控制器的控制键钮设置在驾驶者操纵方便的地方;

一般在门内侧的扶手上面。

有些轿车的控制器还设有微电脑,有记忆能力,只要按下某一记忆按钮,即可自动将电动座椅调整到存储的位置上。

可逆性直流电动机一般有三个以上,他们受控制其控制并分别驱动某个调整方向的传动部件。

传动部件有蜗杆轴、蜗轮、心轴和齿条等。

调整时,主动轴在电动机的驱动下,带动从动轴转动,从而将心轴旋入或旋出,即座椅下降或上升。

如果蜗轮又与齿条啮合,蜗轮转动将齿条移动,即令座椅前移或后移。

目前调节机构可以调节座椅的水平移动和垂直移动,靠背的角度移动和靠枕的高度移动,即所谓“六向可调式”。

现在先进的技术还可调节座椅底座的前后、座椅底座前方的上下、座椅底座后方的上下及座椅靠背的前后摆动,此即“八向可调式”,乘员可以根据自己的身材将座椅调到一个合适的位置。

过去的轿车以交通为唯一目的,今天的轿车设计思想则倡导人与车的融合,座椅就是这个设计思想中极其重要的环节。

现代轿车座椅涉及到电子学、人体工程学、工业设计学等方面的领域,随着汽车技术的发展,轿车座椅已从一个简单的部件发展到一个比较复杂和精度程度要求比较高的部件。

现代轿车已经不是一个单纯的运载工具,他已经是“人、汽车与环境”的组合体。

座椅作为汽车使用者的直接支撑装置,在车厢部件中具有非同小可的重要性。

汽车座椅的主要功能是为驾驭者提供便于操纵、舒适、安全个不易疲劳的驾驶座位。

座椅设计适应同时满足以下五点基本要求

(1)座椅的合理布置;

(2)座椅外形要符合人体生理功能;

(3)座椅应具有调节机构;

(4)座椅有良好的振动特性;

(5)座椅必须十分安全可靠。

1.2本次课程设计的提出及相关问题

随着人类生活水平的不断提高和科学技术的蓬勃发展,汽车作为一种更为广泛的交通工具被用于人们的日常生活中,汽车的种类越来越多,功能越来越齐全,不断地向智能化发展,人们对汽车的便利性、舒适度的要求更是越来越高。

过去的轿车以交通为唯一目的,现在的轿车设计思想则倡导人与车的融合,座椅就是这个设计思想中极其重要的环节。

现在的轿车的驾驶者座椅和前部成员座椅是电动可调的,又称电动座椅,座椅是与人接触的最为密切的部件,人们对桥车平顺性的评价多是通过座椅的感受作出的。

因此,电动座椅是直接影响轿车质量的关键部件之一,现代轿车座椅涉及到电子学、人体工程学、工业设计学等方面的领域,随着汽车技术的发展,轿车座椅巳从一个简单的部件发展到一个比较复杂和精确程度要求比较高的部件。

所以我本次课程设计的题目是基于蜗轮蜗杆传动的八向可调式轿车电动座椅设计,本次设计是在轿车普通座椅的基础上,设计一种基于蜗轮蜗杆传动的座椅前后可调、座椅前部高低可调,座椅后部高低可调,靠背部角度可调的八向可调经济型轿车座椅,要求操纵方便,运动平稳,安全可靠,低噪音。

在经过认真思考和查阅相关资料后,我认为本次课程设计主要是解决以下主要问题:

查阅相关资料,了解电动座椅的发展的动态。

由于座椅是衡量轿车档次的重要依据,因此电动座椅在具体设计时应该需要引起重视,在工艺结构造型方面,则需要移动,即令座椅前移或后移。

充分考虑人体尺寸、人体重量、乘坐姿势和体压分布等因素。

方案的关键是基于蜗轮蜗杆传动的结构设计,实现要求的八向位传动。

并能合理的安排电动机、各机构在座椅上的布局。

座椅是支撑和保护人体的构件,必须十分安全可靠,所以要进行蜗轮蜗杆传动机构的刚度计算。

大多数电动座椅采用永磁式电动机,查阅相关资料,合理选用电动机,还要考虑其在座椅中的相对位置。

1.3轿车座椅人体工程学的应用及尺寸参数

1.3.1人体工程学的应用

坐姿是人体较自然的姿势,也是进行各种操作经常采用的姿势。

座椅与人们的生活息息相关,无论是工作、学习、出门旅行、在家休息都离不开座椅。

人的坐姿是个相当复杂的问题,虽然座椅伴随人类的生活己经有几千年的历史了,但是关于座椅的设计问题至今仍然是值得研究的课题。

在生物学中,当坐立时,人的身体由脊椎、胯骨、腿和脚支撑。

主要用来支撑人体重量的关节为胯骨和腰椎,腰椎的第三、第四腰椎为整个脊椎骨中受力最大的部位。

所以腰椎也就比上方的椎骨大而且硬得多。

坐姿时,尾椎将受到压力而往前弯,有缓冲震荡的作用。

坐骨构成了胯骨最下方的部位,其后下方的坐骨结节为L字母形状,当人们坐着的时候,此处往下顶住来支撑身体的重量。

长期的姿势不良、受伤或者疾病,伤害就会发生在脊椎弯曲的地方,如胸弯过分弯曲就会造成圆肩或驼背;

腰部脊椎过分弯曲,会造成脊椎的侧弯或是脊椎的前凸症、后凸症。

当人们在椅子上时,若坐姿不良,骨盆很容易下陷,仔细摸骨盆两侧,发现整个骨盆往后倾,整个人会感到胸廓与腰杆交界处造成腰酸背疼、驼背。

长期使用电脑的上班族而言,坐姿不良通常是造成腰酸背疼得最主要的凶手。

人们的脊椎在坐姿情况下就像是一根杠杆,如果头部向前倾,为了支撑前倾的头部,骨头的韧带就会产生一个拉力,当力量超过韧带所能负荷的范围,这个力量就会转移到背后的肌肉上,于是肌肉便持续暴露在张力之下。

久而久之,就会出现颈部、背部、腰部肌肉酸痛的症状。

坐姿状态下,支撑身体的是脊柱、骨盆、腿和脚。

脊柱是人体的主要支柱,由24节椎骨以及5块骸骨(已连成一体)和4块尾骨(己连成一体)连结组成,如图1.1所示,其中椎骨自上而下又分为颈椎(共7节)、胸椎(共12节)、腰椎(共5节)三部分,每两节椎骨之间由软骨组织和韧带相联系,使人体得以进行屈伸、侧曲和扭转动作等有限度的活动。

颈椎支撑头部,肋椎与肋骨构成胸腔,腰椎、骸骨和椎间盘承担人体坐姿的主要负荷。

图1.1人体脊椎构造图图1.2人体在不同状态下腰椎弯曲形状

由于腰椎几乎承受着人的上体的全部重量,并且要实现弯腰、侧曲、扭转等人体运动,所以最容易损伤或腰曲变形。

从侧面观察脊柱,可看到脊柱呈现颈、胸、腰、骸四个弯曲部位,其中颈曲和腰曲凸向前,胸曲和骸曲凸向后。

脊柱的自然弯曲弧形应如图1.1所示,椎骨的支承表面相互位置正常,椎间盘没有错位的趋势。

一旦人体改变这种自然弯曲状态,会引起惟间盘压力改变,使腰部疼痛。

图1.2所示为人体在各种不同姿势下的腰椎弯曲形状。

曲线C是最接近人体脊柱自然弯曲状态的坐姿,椎间盘上的压力可较正常分布。

因此,欲使坐姿能形成接近正常的脊柱自然弯曲形态,躯干与大腿之间须有大约135°

的夹角,且座椅应使坐者的腰部有适当支撑,以便腰曲弧形自然弯曲,腰背肌肉处于放松状态。

人坐着时,大腿和上身的重量必须由座椅来支承。

人体结构在骨盆下面有两块圆骨,称为坐骨结节,如图1.3所示。

这两块小面积能够支持大部分上身的重量。

座面上的臀部压力分布是在坐骨结节处最大,由此向外压力逐渐减小,直至与座而前缘接触的大腿下部,压力为最小。

座垫的柔软程度要适当,坐骨部分的座垫应当是支承性的,它要承受加在座位上的大约60%的重量,而其余部分则应当比它更柔软些,以便能够把重量分布在更大约面积上。

座椅靠背上的压力分布,应当是肩脚骨和腰椎骨两个部位最高,此即靠背设计中所谓的“两点支承”准则。

靠背的两点支承中,上支承点为肩脚骨提供凭靠,称为肩靠,其位置相当于第5~65节胸椎之间的高度;

下支承点为腰曲部分提供凭靠,称为腰靠,其位置相当于第4~5节腰椎之间的高度。

不同用途的座椅,两点支承的作用不一样,休息用的座椅,体、腿夹角较大(舒适角度约为115°

),坐着时身体向后倾斜,只要肩部分支承稳靠,没有腰靠也能得到舒适的坐姿,因此是以肩靠起主要作用;

而一般操作用座椅,由于操作的要求,身体需要略向前倾,肩胖骨部分几乎接触不到靠背,因此只有腰靠起支撑作用,

图1.3股骨正常位置

一般无需设置肩靠。

腰靠支承是使背疼和疲劳减到最轻的主要措施,否则,将只靠肌肉来维持腰曲弧形,势必引起腰部肌肉疲劳和损伤。

考虑到人的身材高矮不同,对某些座椅应当具有能调节腰靠位置的装置。

腿的主动脉紧靠着大腿下表面和膝盖的后面,在这个部位上,任何持续的压力都会给人造成极端的不好适和肿胀感觉需要借助于适当减短座深、把座垫前缘修圆和采用较软的泡沫塑料座垫等措施来防止发生这种情况。

同时,还

要使座面离地板的高度足够低,以便使脚能踩着地板,让人的这个重要部位感觉不到有任何压力。

坐骨下面的座面应当近似是水平的。

图1.3表示带有股骨的骨盆部位的前视图,股骨在股节中从连接骨盆的球孔向外伸去。

用平的座位,股骨的这一部分在坐骨平面之上,因此不承受过分的压迫。

座椅的设计必须有可能让人经常地改变自己的姿势和位置,以便减轻压力和活动伸展各部分肌肉。

人在坐姿状态下,体重作用在座面和靠背上的压力分布称为坐态体压分布,它与坐姿及座椅的结构密切相关,图1.4为人体在靠背和座垫上最适宜的体压分布,对于体压的研究是目前人们对座椅进行研究的主要方法和参数。

体压分布的测量一般采用等高线的形式反映压力分布状况。

就座者的骨盆可以比喻为倒立的锥体,与椅面接触的主要是臀部两块薄肌肉层下的坐骨。

由坐骨向外,压力逐渐减少。

为了减少臀部下部的压力,座面一般应设计成软垫,其柔软程度以使坐骨出支承人体的60%左右的重量为宜,采用软性坐垫,增大臀部与座面的接触面积,就改善了这种压力集中的现象,使整个臀

图1.4人体在靠背和座垫上最适宜的体压分布

部均承担体重的压力,减缓坐骨下支点处的疲劳,可以延长就座时间。

但不论什么座面,不论哪种姿势,长时间采取一种坐姿总会产生静力疲劳。

因此,任何一种座椅在设计时都应考虑变换坐姿的可能性。

人体与座椅之间的压力分布称为坐姿的体压分布,坐姿的体压分布是影响乘坐舒适性的重要因素。

人就坐时,身体重量的大部分(约80%)经过臀部、背部隆起部分及其附着的肌肉压在坐椅面上。

图1.5为座椅各部位的受力分布示意图。

图1.5座椅各部位的受力分布

1.3.2轿车座椅尺寸参数

国家标准GB/0000-28《中国成年人人体尺寸》按照人机工程学的要求提供了我国成年人人体尺寸的基本数据,座椅的座位空间及座椅的尺寸应保证适应人体舒适坐姿的生理特征,提供实现舒适做态的支承条件。

GB/14774-1993《工作座椅一般人类工效学要求》给出了工作座椅的基本结构和主要参数,使工作座椅设计的基本依据。

根据以上标准,结合轿车车内空间和驾乘人员的调节要求,确定如下参数。

(1)椅面高度:

定义为椅面前缘至驾驶员驻点的垂直距离。

选定驾驶员座椅椅面高度可调范围为280-380mm。

(2)椅面宽度:

座椅坐垫两侧宽度。

防止驾乘者在出现离心力时臂部产生横向滑动,要在座椅椅面两侧附加额外防滑凸起设计,所以椅面总宽选定512mm。

(3)椅面深度:

指椅面前缘至靠背前面水平距离。

深度过大时躯干相对前移,腰部得不到良好的支撑,引起疲劳;

过小时,大腿得不到良好的支撑。

所以为了保障驾乘者的臂部和大腿部被充分支撑和包裹,椅面深度选定520mm。

(4)靠背高度:

靠背最下端到最顶端的距离。

为保证座椅靠背在具有角度倾斜时同样可以保证对驾乘者的支撑,所以靠背高度选定607mm。

(5)靠背宽度:

靠背两侧最宽的距离。

为避免和减少驾乘者腰背部在座椅上产生横向滑移,靠背宽度选定500mm。

(6)靠背倾角:

靠背倾角是指靠背与椅面水平方向的夹角,为满足驾驶舒适、安全性以及休息时的便利性、靠背倾角调节范围为80°

—170°

(7)椅面倾角:

指椅面与水平之间的夹角。

轿车夹角,为满足驾驶舒适安全性以及休息时的便利性、靠背倾角调节范围的椅面倾角应兼顾安全性和舒适、性,一般为2°

—10°

(8)头枕尺寸:

根据GB/11550-1995《汽车座椅头枕性能要求和试验方法》,确定头枕高度为208mm,宽度为230mm,厚度为100mm,头枕可调范围0-100mm。

2电动座椅水平移动系统方案的确定

2.1前后移动方案的选定

2.1.1传动调节装置的确定

传动装置的作用是将电动机的动力传给座椅调节位置,使其完成座椅的调整,主要有联轴器软轴、减速器与螺纹千斤顶或蜗轮蜗杆传动机构组成。

经过分析可知:

由于电动机轴与传动轴的直径相差不大,因此可直接相连,采用螺纹锁紧的简易联轴器。

传动轴的选择根据电动机的安装位置的不同有以下几种:

当采用单相电动机时,传动轴选用锥齿轮与轴相连。

图2.1单轴电动机输出

当采用双轴输出电机时如下图所示:

图2.2双轴电动机输出

对以上两种方案进行比较,采用双轴输出电机与传动轴直接相连可使传动链变得相对紧凑,传动更加平稳。

2.1.2传动方案的确定

第一种方案如下图所示:

图2.3齿轮齿条传动机构

此种方案看似结构简单,但实际有以下缺点:

在执行机构方面采用齿轮和齿条相啮合,传动时的载荷不能太大,而要传递80kg重量的载荷所需要的转矩较大,则需要增加齿轮的尺寸。

其次,齿轮的安装从受力角度来分析并不利于啮合,如齿轮齿条的间隙一扩大就会容易产生噪声和误齿合,这种现象是绝不应该出现的。

第二种方案如下图所示:

图2.4锥齿轮丝杠传动机构

在这种方案中,减速器选用锥齿轮,,锥齿轮的设计和制造、安装较为方便,但是考虑到座椅的尺寸情况采用蜗轮蜗杆减速器更为适合,蜗轮蜗杆具有大的传动比和自锁功能,而且也可传递空间交错的两轴运动,给制造带来了方便,并且体积小便于安装、传动平稳等特点,正好适用于系统的减速。

根据以上两种方案的论证与总结得出第三种方案:

图2.5蜗轮蜗杆丝杠传动机构

采用丝杆螺母这种传动方案即能满足电动座椅的功能要求,而且结构紧凑,便于安装调试。

最大的优点就是造价便宜,且传动平稳、噪声小并且有向自锁的优点是本次设计较理想的选择。

2.2水平滑动电机的选择

2.2.1丝杆电机的选择

根据要求移动导轨的移动距离为100~160mm,全程移动所需时间为8~10s选择移动的最大距离为120mm,所需时间为8s,座椅的移动速度:

v=s/t=120mm/8s=0.015m/s(2.1)

由于导轨与螺母相连,所以螺母移动的速度为0.015m/s,根据螺母与丝杆的配合关系通过公式:

v=L·

n(2.2)

初选丝杆的半径为8.5mm,螺距为3mm,代入公式得:

n丝=v/l=v/p=15*100/3=300r/min

根据丝杆的转速初选电机的转速为300r/min。

2.2.2选择电动机类型

首选电动机要根据电源(交流或直流),工作条件(温度、环境、空间尺寸等)和载荷特点、性质、大小、启动性能、过载情况。

电动座椅上的电动机作用是为了电动座椅的调节机构提供动力,此类电动机多采用双向电动机,即电枢的旋转方向随电流的方向的改变而改变,使电动机按不同的电流方向进行正转或反转以达到座椅调节的目的。

为防止电动机过载,电动机内装有熔断丝,以确保电气设备的安全。

无刷直流电机的优点是:

①电机外特性好,非常符合电动车辆的负载特性,尤其是电机具有可贵的低速大转矩特性,能够提供大的起动转矩,满足车辆的加速要求。

②速度范围宽,电机可以在任何转速下稳定大转矩高效率运行,这是无刷直流电机的独有特性,这进一步提高整车效率。

③电机效率高,尤其是在轻载车况下,电机仍能保持较高的效率,这对珍贵的电池能量是很重要的。

④过载能力强,这种电机比Y系列电动机可提高过载能力2倍以上,满足车辆的突起堵转需要。

⑤再生制动效果好,因电机转子具有很高的永久磁场,在汽车下坡或制动时电机可完全进入发电机状态,给电池充电,同时起到电制动作用,减轻机械刹车负担。

⑥电机体积小、重量轻、比功率大、可有效地减轻重量、节省空间。

⑦电机无机械换向器,采用全封闭式结构,防止尘土进入电机内部,可靠性高。

⑧电机控制系统比异步电机简单。

缺点是电机本身比交流电机复杂,控制器比有刷直流电机复杂。

根据以上条件我们选用用磁性双向轴输出的直流电动机的sz系列。

2.3选择电动机的容量

电动机的容量(功率)选择是否适合,对电动机的工作和经济性都有影响。

ηη容量小于工作要求,则不能工作机的正常工作,或使电动机因长期的超载运行而过早损坏;

容量选择过大,则对电动机的价格高,传动能力又不能充分利用,由于电动机经常在载荷下运转,其效率和功率因数都较低,从而造成能源的浪费。

对于比较稳定,长期运转的机械,通常按照电机的额动工率进行选择,而不必校核电动机的发热和启动转矩,选择电动机容量时应保证电动机的额定功率Ped等于或稍大于工作机所需的电动机功率Pd,即:

Ped≥Pd

工作及所需电动机的功率为Pd=Pw/ηkw(2.3)

式中:

Pw——工作及所需功率,指输入工作机轴的功率kw

η——由电动机至工作机的总效率

工作机所需功率Pw,应有工作机的工作阻力和运动参数(线速度或转速)计算求得:

Pw=FV/1000kw或Pw=Tnw/9550kw(2.4)

F——工作及的阻力N

V——工作机的线速度,如运输机输送带的线速度m/s

T——工作机的阻力矩N*m

nw——工作机的转速r/min

根据本次设计要求:

涡轮蜗杆的传动比大而且反行程具有自锁功能,常取Z=4,即四头蜗杆,其传递效率为0.80~0.92球轴承的效率为0.99联轴器的效率为0.99丝杆的效率为0.45

功率传递流向:

电机------涡轮蜗杆-------丝杆螺母

传递装置的总效率应为组成传动装置的各个运动副效率的乘积即:

0.246(2.5)

工作机的转速为nw=n丝=300r/min

根据以上特性初选电动机的转速为3000r/min,功率10w,电压24v

工作机的阻力力矩就是涡轮上的转矩T.

T=9.55*1000*580.75*10/(3000/10)=238.75N/mm(2.6)

故工作及所需要的输入Pw2

Pw=Tnw/9550ηω=283.75×

300÷

9500÷

0.75=10w(2.7)

在丝杆上消耗的功率:

座椅的平行负荷能力110kg,则分担在丝杆上的为55kg,可计算出:

N=(G/2)cosθ=55×

9.8×

cosθ(2.8)

b是人与丝杆的夹角,而且很小,取b=6°

则N=536N,摩擦力

f=G/2sinθ=9.8×

55sin6°

=56.34N(2.9)

在丝杆上消耗的功率

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2