异步电动机启动进程分析.docx

上传人:b****2 文档编号:2876029 上传时间:2023-05-04 格式:DOCX 页数:24 大小:517.80KB
下载 相关 举报
异步电动机启动进程分析.docx_第1页
第1页 / 共24页
异步电动机启动进程分析.docx_第2页
第2页 / 共24页
异步电动机启动进程分析.docx_第3页
第3页 / 共24页
异步电动机启动进程分析.docx_第4页
第4页 / 共24页
异步电动机启动进程分析.docx_第5页
第5页 / 共24页
异步电动机启动进程分析.docx_第6页
第6页 / 共24页
异步电动机启动进程分析.docx_第7页
第7页 / 共24页
异步电动机启动进程分析.docx_第8页
第8页 / 共24页
异步电动机启动进程分析.docx_第9页
第9页 / 共24页
异步电动机启动进程分析.docx_第10页
第10页 / 共24页
异步电动机启动进程分析.docx_第11页
第11页 / 共24页
异步电动机启动进程分析.docx_第12页
第12页 / 共24页
异步电动机启动进程分析.docx_第13页
第13页 / 共24页
异步电动机启动进程分析.docx_第14页
第14页 / 共24页
异步电动机启动进程分析.docx_第15页
第15页 / 共24页
异步电动机启动进程分析.docx_第16页
第16页 / 共24页
异步电动机启动进程分析.docx_第17页
第17页 / 共24页
异步电动机启动进程分析.docx_第18页
第18页 / 共24页
异步电动机启动进程分析.docx_第19页
第19页 / 共24页
异步电动机启动进程分析.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

异步电动机启动进程分析.docx

《异步电动机启动进程分析.docx》由会员分享,可在线阅读,更多相关《异步电动机启动进程分析.docx(24页珍藏版)》请在冰点文库上搜索。

异步电动机启动进程分析.docx

异步电动机启动进程分析

 

交流调速专题报告二

 

学号082911xx

姓名张XX

班级电气08xx

异步电动机启动进程分析

张XX

(北京交通大学电气工程学院,北京100044)

摘要:

随着异步电动机作为重要的动力设备在社会各行各业的普遍应用,研究三相鼠笼式异步电动机在各类起动方式下的起动性能就显得尤其重要。

为取得较好的起动效果,在对笼型异步电机进行深切分析的基础上,利用Matlab中的Simulink仿真工具对异步电动机的直接起动、降压起动、V/f比控制起动方式进行动态仿真。

通过对起动进程中电机的定子电流、起动转矩和转子转速进行检测,得出各类起动方式下电流—时刻、转矩—时刻、转速—时刻和转矩—转速的特性曲线,从而比较不同起动方式的起动性能好坏。

异步电动机变频起动后,使起动电流大大减小,起动时对电网的冲击效应较小,而且使异步电动机起动转矩尽可能大,缩短了起动时刻,从而克服了传统起动的短处。

关键字:

直接起动;降压启动;V/f比控制起动;笼型异步电机

Abstract:

Withtheinductionmotorasanimportantpowerequipmentwidelyusedinallwalksoflife,researchphasesquirrelcageinductionmotorstart-upmodeinavarietyofstartingperformanceisparticularlyimportant.Inordertoobtaingoodstartingresults,inthecageinductionmotorin-depthanalysis,basedontheuseofMatlabSimulinksimulationtoolsforasynchronousmotordirectstarting,reducedvoltagestarting,V/fratiocontrolmethodforstartingthedynamicsimulation.Throughtheprocessofstartingthemotorstatorcurrent,startingtorqueandrotorspeedtesting,comeunderavarietyofwaysstartingcurrent-time,torque-time,speed-thetimeandtorque-speedcharacteristiccurvestocomparethedifferentstartingwayofstartingperformanceoftheprosandcons.Afterinductionmotorvariablefrequencystart,sothatgreatlyreducethestartingcurrent,startingatasmallereffectontheimpactofthegrid,andtheinductionmotorstartingtorqueaslargeaspossible,shorteningthestartingtime,toovercomethetraditionalstartofthestate.

Keywords:

directstart;Buckstarted;V/fratiocontrolstarts;cageinductionmotor

1前言

 三相异步电动机起动研究的意义

电动机作为重要的动力装置,已被普遍用于工业、农业、运输、国防军事设施和日常生活中。

与电机配套的控制设备的性能已经成为用户关注的核心。

电机的控制包括电机的起动、调速和制动。

异步电动机由于具有结构简单、体积小、价钱低廉、运行靠得住、维修方便、运行效率较高、工作特性较好等长处,因此在电力拖动平台上取得了普遍应用。

据统计,其耗电量约占全国发电量的40%左右。

当电机并入电网时,电机转速从静止加速到额定转速的进程称为电机的起动进程。

异步电动机的起动性能最重要的是起动电流和起动转矩。

因此在电机的起动进程中,如何降低起动电流,增大起动转矩,一直是机电行业的专家们探讨的重要课题。

 三相异步电动机的起动分类及其进展方向

目前,最多见的是直接起动方式,这是一种最简单的起动方式。

就是用闸刀开关或接触器把电机的定子绕组直接接到电网上。

这种方式的长处是操作和起动设备简单,缺点是起动电流专门大。

一般鼠笼式异步电机直接起动的电流是额定电流的4~7倍,某些国产电机乃至可达8~12倍,起动转矩是额定转矩的1~2倍。

虽然,起动电流专门大,但起动转矩并非大。

因此,直接起动方式只适用于小容量电机起动。

为了解决直接起动带来的一系列问题,人们采用了各类降压起动技术,目前应用较为普遍的有自耦变压器起动、串电阻或串电抗起动、Y-△启动和延边三角形起动等方式。

这些传统降压起动方式在专门大程度上减缓了大容量电机在相对较小容量电网上起动时的矛盾,但它们只是缩短了大电流冲击的时刻,并无从本质上解决问题。

而且这些起动设备还存在一些固有的缺点:

如对负载的适应能力差、起动电流不持续、触点继电器控制、维修工作量大和浪费能源等问题。

随着自动化、机械化要求日趋提高,这些矛盾变得加倍突出。

 变频起动的进展

虽然软起动仍然以各类形式的降压(限流)软起动为主要形式,可是随着变频器价钱的逐渐下降及靠得住性的进一步提高,变频软起动将成为软起动的主流。

变频器具有所有软起动器功能,但它的价钱比软起动器贵的多,结构也负责的多。

由于其价钱太高,人们购买变频器一般都是着眼于调速,因此常常不把他归类于软启动装置。

但对于需要重载或满载起动的设备,最好采用变频软启动。

因为软起动器调压不调频,转差率始终存在,不免过大的起动电流,而变频器采用调频调压方式,可实现无过流软启动,且可提供-2倍的起动转矩,特别适合于重负载起动的设备。

相信随着电力电子技术的不断进展,变频器的价钱会进一步降低,变频器作为一种软启动方式会取得更为普遍的应用。

各类形式的降压起动动将与星三角起动等技术一路归并为传统的起动技术。

未来成为主流产品的软起动装置将是带有软切换功能的廉价的变频器。

2 笼型异步电动机的起动方式

 直接起动

直接起动,也就是全压起动,是一种最简单的起动方式也是三相异步电动机应用最多的一种起动方式。

小功率电机常常采用这种起动方式但是对较大功率的电机而言,这种起停方式的缺点也是显而易见的。

在这种起动方式下,起动电流约为标称电流的4-7倍;起动转矩约为标称转矩的

倍。

其特点是:

电机端子少(一般为三端子电机),可带载起动、高电流峰值和大压降起动,设备简易。

直接起动是最简单的起动方式,起动时通过空开或接触器将电机直接接到电网上。

具有起动设备简单,起动速度快的长处,而且起动转矩比采用降压起动时大。

在电网和负载两方面都允许全压直接起动的情形下,鼠笼式异步电动机仍以直接起动为宜.因为操纵控制方便,而且比较经济。

其危害专门大电网冲击大。

过大的起动电流,会造成电网压降,影响其他用电设备的正常进行。

还可能使欠压保护动作,造成用电设备的有害跳闸。

同时过大的起动电流会使电机绕组发烧,从而加速绝缘老化,影响电机寿命;机械冲击严峻,过大的冲击力矩容量造成电机转子笼条、端环断裂和定于端部绕组绝缘磨损,致使绝缘击穿烧毁电机,转轴扭曲,联轴节、传动齿轮损伤和皮带撕裂等。

因此虽然直接起动方式简单.起动设备也简单,价钱廉价,但为了限制电和机械的冲击,和保证电网的供电质量,在某种场合,就得采取减压起动方式,或在绕线式异步电动机的转子电路中串入阻抗进行起动。

图为三相交流异步电动机直接起动的电路图。

三相交流电源经由组合开关

,熔断器

,交流接触器KM的主触点到电动机定子绕组,组成了主电路。

图 三相交流异步电动机直接起动的电路图

 降压起动

降压起动通过降低起动时加在定子绕组上的电压来减小起动电流,起动结束后,再将定子绕组的两头电压恢复到额定值。

降压起动虽然能减小起动电流,可是起动转矩也大大减小了,所以降压起动一般适用于中、大容量的异步电动机轻载货空载起动。

降压起动适用于容量大于或等于

并带轻载的工况。

由于轻载,故电动机起动时电磁转矩很容易知足负载要求。

主要问题是起动电流大,电网难以经受过大的冲击电流,因此必需降低起动电流。

在研究起动时,能够用短路阻抗

来等效异步电动机。

电机的起动电流(即流过

上的电流)与端电压成正比,而起动转矩与电机端电压的平方成正比,这就是提及动转矩比起动电流降得更快。

降压以后在起动电流知足要求的情形下,还要校核起动转矩是不是知足要求。

 三相异步电动机变频起动的原理

按照三相异步电动机的转速公式为

式中

为异步电动机的定子电压供电频率;

为异步电动机的极对数;

为异步电动机的转差率。

改变异步电动机定子绕组供电电源的频率

,能够改变同步转速

,从而改变转速。

若是频率

持续可调,则可光滑的调节转速,此为变频调速原理。

3异步电机启动进程的simulink仿真

直接启动

异步电机直接起动仿真模型

上图为异步电动机直接起动仿真模型。

起动进程中,把全数的电源电压直接加到电机的定子绕组。

其中,三相电源的3路输入信号的初始相位别离设置为0,-120,120。

相电压设为220V,频率为50Hz。

电机模块绕组类型选择鼠笼式(Squirrel-cage)。

所有的图形的仿真时刻均为10s(截取图形时为了截取有效数据,一般都是选择性截取,没有截取到10s)仿真算法为ode23tb。

对各元件的参数配置完成后就可以够进行仿真。

仿真波形:

上图别离是:

转子电流、定子电流、转速、转矩波形

下图是:

异步电机直接启动时转速—转矩特性曲线

从上面波形图能够看出,直接起动时,起动进程在秒左右结束,起动速度较快。

因为负载很小,所以转速超级接近同步转速1500

,转速上升速度快。

定子电流波形和转子电流波形呈现较大的振荡,起动后电流降至正常工作电流。

启动负载较小,异步电机在直接起动进程中的起动定子电流最大约为(找尖峰,进行图形放大取得)。

降压启动

异步电机降压启动仿真模型

图中为异步电动机自耦变压器降压起动仿真模型。

起动时,串联的一组breaker开关合上,并联在变压器两头的一组breaker开关打开,如此使得变压器接入电源,其二次侧抽头接电动机,使电动机降压起动。

当转速接增加到必然转速时,将串联的一组开关打开,并联在变压器两头的开关闭合,则电动机接入全电压(现在自耦变压器已经离开电源),继续起动,但现在的电流冲击已经很小。

再过一小段时刻,电机进入正常运行状态。

升压时刻为1s时的仿真波形:

(转子电流、定子电流、转速、转矩波形)

升压时刻为2s时的仿真波形:

升压时刻为3s时的仿真波形:

升压时刻为4s时的仿真波形:

升压时刻为5s时的仿真波形:

升压时刻为6s时的仿真波形:

上图别离是:

转子电流、定子电流、转速、转矩波形

下图是:

异步电机降压启动时转速—转矩特性曲线

升压时刻为1s时的转速—转矩特性:

升压时刻为2s时的转速—转矩特性:

升压时刻为3s时的转速—转矩特性:

升压时刻为4s时的转速—转矩特性:

升压时刻为5s时的转速—转矩特性:

升压时刻为6s时的转速—转矩特性:

异步电动机通过自耦变压器降压起动,能够减小变压器二次侧加在定子两头的机端电压,从而达到减小起动电流的目的。

从定子电流波形可知,当转速接近正常运行转速时,接入全电压,比直接起动的定子电流小。

可是在起动的进程中,由于自耦变压器的退出,电流波形出现了高电流峰值,存在2次大的冲击电流。

V/f比控制

异步电机V/f比控制启动仿真模型

仿真图说明:

上图中的的PWM模块是利用自行编制的PWM,单击鼠标右键,弹出右键菜单,单击Creatsubsystem进行封装,然后重命名取得的。

下面是说明图。

1)加速(减速)斜率设置为200(-200)时仿真结果

上图别离是:

转子电流、定子电流、转速、转矩波形

下图是:

异步电机V/f比控制起动时转速—转矩特性曲线

2)加速(减速)斜率设置为100(-100)时仿真结果

上图别离是:

转子电流、定子电流、转速、转矩波形

下图是:

异步电机V/f比控制起动时转速—转矩特性曲线

2)加速(减速)斜率设置为2(-2)时仿真结果

4仿真结果分析

启动的速度、启动电流、启动转矩进行对比分析

时间

启动电流最大值

启动转矩最大值

直接起动

2s

A

降压启动(变比220:

180)

(取稳定启动的时间)

23A

V/f控制启动(取斜率为100时数据)

1s

45

直接起动比降压启动时刻短,可是启动电流大,启动转矩大。

V/f启动时刻最短,启动转矩比其他两种启动都大很多。

启动电流比直接起动小,与降压启动相较启动电流略大一点。

降压启动中升压时刻对启动电流及启动转矩的影响进行分析

变压器变比220:

180

从仿真图中能够取得

开关切换的时间即全电压接入前的时间

1s

2s

3s

4s

5s

6s

开关切换时的转速

150

371

731

1354

1443

1443

转速达到稳定所需时间

定子电流的幅值

转矩波动时间

转矩的波动幅值

从表格中能够看出接入全电压的时刻越早,转速越早达到稳固,电机启动所历时刻越短,可是定子电流幅值的幅值越大,这是因为接入全电压时,电压的突然升高会使电流出现突然的升高,在原来波动基础之上进行叠加造成的,因此全电压越早接入对电网及电机的冲击越大。

从图中能够看出若是一直不撤去变压器,时转速已经稳固,现在转速已经达到最大值,现在接入全电压对定子电流形成的冲击为,由于没有与启动时的波动电流叠加,所以对电机及电网的影响很小,因此接入全电压的时刻在时接入比较好。

在转速达到稳固前(5s前),接入全电压的时刻早,负载转矩的波动时刻越长。

由于负载很小,接入全电压的时刻对转矩的幅值影响很小。

V/f比控制中加速时刻对启动电流及启动转矩的影响进行分析

加速(减速)斜率设置为200(-200)

加速(减速)斜率设置为100(-100)

加速(减速)斜率设置为2(-2)

启动电流幅值

46A

启动时间

1s

启动转矩幅值

83

45

26

加速斜率越大,启动时刻越短,启动转矩越大,启动电流幅值越大。

因为加速斜率大,加速时刻会比较短,因此必需提供较大的转矩来牵引电机,所以启动电流也会比较大。

5变频起动与其他启动方式性能比较

技术性比较

单从技术上来讲,变频具有不可比拟的优势,起动特性好,可持续起动多次,起动电流可控制在额定电流以下,起动时电网功率因素高(~),电网压降小,同时还可进行调速,减小动力设备功率消耗,节约电能。

缺点是产生高磁谐波,污染电网,影响系统内其它设备的用电质量,要解决谐波污染,还得追加设备投资。

经济性比较

从实用性经济角度来讲,变频起动属于一种过于奢侈的技术方案,虽然变频起动能够将起动电流降到额定电流以下,可是对于不是特别频繁起动又不需要调速的大型动力设备来讲,仅仅为了起动而进行巨额投资,太不经济。

靠得住性比较

变频软起动技术含量高,设备复杂,技术难度较大,利用保护及故障处置等对技术人员的技术素质要求高。

发生故障,解决问题的技术难度较高,事故处置周期较长。

变频调速起动是目前最好的电机起动方式,能够大体上做到对电网无冲击,负荷电流从零光滑地达到满负荷额定电流,而母线电压维持不变。

这种起动方式虽一次投资大,但起动进程对电网和设备影响很小,且节约能源。

因此对于风机和泵类负载电动机的起动,在投资允许的条件下,应优先采用变频调速起动。

变频调速起动以其节能、降耗、优质的性能成为符合21世纪进展需要的首要传动技术。

参考文献:

[1]林飞,杜欣.电力电子应用技术的matlab仿真[M].北京:

中国电力出版社,2009

[2]周渊深.交直流调速系统与MATLAB仿真[M].北京:

中国电力出版社,2007

[3]李华德.交流调速控制系统[M].北京:

电子工业出版社,2003

[4]辜承林,陈乔夫,熊永前.电机学[M].武汉:

华中科技大学出版社,2005

[5]邓建国.基于MATLAB/SIMULINK的异步电动机仿真模型及起动进程的仿真[J].湖南工程学院学报(自然科学版),2002

(1)

[6]徐维克.三相异步电动机起动方式的讨论[J].航海技术,2001

[7]孙淼洋.浅析三相异步电动机的启动分类[J].硅谷,2010

(2)

[8]张建华,杨鹏,史旺旺.三相异步电动机起动进程仿真分析[J].中小型电机,2002(06)

[9]蔡嘹亮,蔡纳新.三相异步电动机的晶闸管软启动方式及设计[J].黑龙江大学自然科学学报,2000(4)

[10]熊幸明,何新军.基于MATLAB的三相异步电动机的起动特性研究[J].电机电器技术,2003

(2)

[11]张清颜,凌世纪.浅析三相异步电动机软启动的几种方式[J].黑龙江科技信息,2009(5)

[12]严新英.三相异步电动机的几种降压启动方式探讨[J].,2009

[13]田冰冰.三相异步电动机的启动及软启动研究[J].甘肃科技,2009

[14]陶瑞莲.基于MATLAB三相异步电动机起动建模及仿真[J].南京工业职业技术学院学报,2009

(2)

[15]欧阳莲,周君礼.鼠笼式三相异步电动机的启动方式[J].煤炭工程,2003

[16]张智慧.三相异步电动机启动常见问题及启动方式[J].科技信息,2008

[17]顾晓辉.基于PLC控制的三相异步电动机星——三角启动[J].黑龙江科技信息,2009

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2