倒立摆基本原理.docx

上传人:b****2 文档编号:2933780 上传时间:2023-05-05 格式:DOCX 页数:8 大小:120.44KB
下载 相关 举报
倒立摆基本原理.docx_第1页
第1页 / 共8页
倒立摆基本原理.docx_第2页
第2页 / 共8页
倒立摆基本原理.docx_第3页
第3页 / 共8页
倒立摆基本原理.docx_第4页
第4页 / 共8页
倒立摆基本原理.docx_第5页
第5页 / 共8页
倒立摆基本原理.docx_第6页
第6页 / 共8页
倒立摆基本原理.docx_第7页
第7页 / 共8页
倒立摆基本原理.docx_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

倒立摆基本原理.docx

《倒立摆基本原理.docx》由会员分享,可在线阅读,更多相关《倒立摆基本原理.docx(8页珍藏版)》请在冰点文库上搜索。

倒立摆基本原理.docx

倒立摆基本原理

倒立摆基本原理

前言

 

倒立摆是进行控制理论研究的典型实验平台。

由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备。

学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。

倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。

由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法,相关的科研成果在航天科技和机器人学方面获得了广阔的应用。

二十世纪九十年代以来,更加复杂多种形式的倒立摆系统成为控制理论研究领域的热点,每年在专业杂志上都会有大量的优秀论文出现。

第一部分倒立摆系统介绍

一、倒立摆系统简介

倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

最初研究开始于二十世纪50年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。

近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。

(一)倒立摆分类

倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆:

1、直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在

主动小车和从动小车之间增加了一个弹簧,作为柔性关节。

2、环形倒立摆系列环形倒立摆是在圆周运动模块上装有摆体组件,圆周运动模块有一个自由度,可以围绕齿轮中心做圆周运动,在运动手臂末端装有摆体组件,根据摆体组件的级数和串连或并联的方式,可以组成很多形式的倒立摆。

3、平面倒立摆系列平面倒立摆是在可以做平面运动的运动模块上装有摆杆组件,平面运动模块主要有两类:

一类是XY运动平台,另一类是两自由度SCARA机械臂;摆体组件也有一级、二级、三级和四级很多种。

4、复合倒立摆系列复合倒立摆为一类新型倒立摆,由运动本体和摆杆组件组成,其运动本体可以很方便的调整成三种模式,一是2中所述的环形倒立摆,还可以把本体翻转90度,连杆竖直向下和竖直向上组成托摆和顶摆两种形式的倒立摆。

按倒立摆的级数来分:

有一级倒立摆、两级倒立摆、三级倒立摆和四级倒立摆,一级倒立摆常用于控制理论的基础实验,多级倒立摆常用于控制算法的研究,倒立摆的级数越高,其控制难度更大,目前,可以实现的倒立摆控制最高为四级倒立摆。

二、数学模型的建立

系统建模可以分为两种:

机理建模和实验建模。

对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。

机理建模就是在了解研究对象的运动规律基础上,通过物理、化学等学科的知识和数学手段建立起系统内部变量、输入变量以及输出变量之间的数学关系。

图1直线一级倒立摆系统

•M小车质量1.096Kg

•m摆杆质量0.109Kg

•b小车摩擦系数0.1N/m/sec

•l摆杆转动轴心到质心长度0.25m

•I摆杆惯量0.0034kg·m2

•F加在小车上的力

•x小车位置

•φ摆杆与垂直向上方向的夹角

•θ摆杆与垂直向下方向的夹角

图2小车及摆杆受力分析----------N和P为小车与摆杆相互作用力的水平和垂直方向的分量

小车水平方向的合力:

摆杆水平方向的合力:

摆杆水平方向的运动方程:

摆杆力矩平衡方程:

摆杆垂直方向的合力:

摆杆垂直方向的运动方程:

用u来代表被控对象的输入力F,线性化后,两个运动方程如下(其中

):

如果令

进行拉普拉斯变换,得到摆杆角度和小车加速度之间的传递函数:

把实际参数带入可得系统的实际模型为:

三倒立摆的发展历史及现状:

早在20世纪60年代,人们就开始了对倒立摆系统的研究。

1966年Schacfer和Cannon应用Bang-Bang控制理论,将一个曲轴稳定于倒置位置。

到了20世纪60年代后期,倒立摆作为一个典型不稳定、非线性的例证被提出【1】。

自此,对于倒立摆系统的研究便成了控制界关注的焦点。

倒立摆的种类很多,有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数可以是一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,还可以是倾斜的(这对实际机器人的步行稳定控制研究更有意义);控制电机可以是单电机,也可以是多级电机。

目前有关倒立摆的研究主要集中在亚洲,如中国的北京师范大学、北京航空航天大学【2】、中国科技大学【3】;日本的东京工业大学、东京电机大学、东京大学;韩国的釜山大学、忠南大学,此外,俄罗斯的圣彼得堡大学、美国的东佛罗里达大学、俄罗斯科学院、波兰的波兹南技术大学、意大利的佛罗伦萨大学也对这个领域有持续的研究。

近年来,虽然各种新型倒立摆不断问世,但是可自主研发并生产倒立摆装置的厂家并不多。

目前,国内各高校基本上都采用香港固高公司和加拿大Quanser公司生产的系统【4、5】;其它一些生产厂家还包括(韩国)奥格斯科技发展有限公司(FT-4820型倒立摆)、保定航空技术实业有限公司;最近,郑州微纳科技有限公司的微纳科技直线电机倒立摆的研制取得了成功。

倒立摆的研究具有重要的工程背景:

(1)机器人的站立与行走类似双倒立摆系统,尽管第一台机器人在美国问世至今已有三十年的历史,机器人的关键技术——机器人的行走控制至今仍未能很好解决。

(2)在火箭等飞行器的飞行过程中,为了保持其正确的姿态,要不断进行实时控制。

(3)通信卫星在预先计算好的轨道和确定的位置上运行的同时,要保持其稳定的姿态,使卫星天线一直指向地球,使它的太阳能电池板一直指向太阳。

(4)侦察卫星中摄像机的轻微抖动会对摄像的图像质量产生很大的影响,为了提高摄像的质量,必须能自动地保持伺服云台的稳定,消除震动。

(5)为防止单级火箭在拐弯时断裂而诞生的柔性火箭(多级火箭),其飞行姿态的控制也可以用多级倒立摆系统进行研究。

由于倒立摆系统与双足机器人,火箭飞行控制和各类伺服云台稳定有很大相似性,因此对倒立摆控制机理的研究具有重要的理论和实践意义。

鲁棒控制【6】是自动控制领域20世纪末最重要的研究结果之一。

简单地说鲁棒控制处理的是不确定性对象,这种不确定性包括外部扰动、模型参数变化未建模动态(即模型与实际系统差异)、执行器的误差等等。

鲁棒控制算法在倒立摆中的应用,尽管这方面的研究工作还没有充分展开,但从已有的一些研究成果不难推断出,鲁棒控制方法是解决倒立摆这一对象非线性、复杂性和不确定性的一种工具。

鲁棒控制的发展方向是面向不确定性的研究对象,如何将其研究成果与实际应用相结合,解决不确定系统的控制问题,或使已有的控制系统具有更强的鲁棒性,这是一项艰巨而复杂的工作。

倒立摆是一个验证理论的正确性及实际应用中的可行性的典型对象。

通过将鲁棒控制算法应用到倒立摆中来验证鲁棒控制算法优越性,最终将鲁棒算法的实际应用更进一步。

2.意义:

倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:

如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

对倒立摆这样的一个典型被控对象进行研究,无论在理论上和方法上都具有重要意义。

不仅由于其级数增加而产生的控制难度是对人类控制能力的有力挑战,更重要的是实现其控制稳定的过程中不断发现新的控制方法,探索新的控制理论,并进而将新的控制方法应用到更广泛的受控对象中。

各种控制理论和方法都可以在这里得以充分实践,并且可以促成相互间的有机结合。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2