牛头刨床课程设计.docx

上传人:b****2 文档编号:3166390 上传时间:2023-05-05 格式:DOCX 页数:23 大小:506.63KB
下载 相关 举报
牛头刨床课程设计.docx_第1页
第1页 / 共23页
牛头刨床课程设计.docx_第2页
第2页 / 共23页
牛头刨床课程设计.docx_第3页
第3页 / 共23页
牛头刨床课程设计.docx_第4页
第4页 / 共23页
牛头刨床课程设计.docx_第5页
第5页 / 共23页
牛头刨床课程设计.docx_第6页
第6页 / 共23页
牛头刨床课程设计.docx_第7页
第7页 / 共23页
牛头刨床课程设计.docx_第8页
第8页 / 共23页
牛头刨床课程设计.docx_第9页
第9页 / 共23页
牛头刨床课程设计.docx_第10页
第10页 / 共23页
牛头刨床课程设计.docx_第11页
第11页 / 共23页
牛头刨床课程设计.docx_第12页
第12页 / 共23页
牛头刨床课程设计.docx_第13页
第13页 / 共23页
牛头刨床课程设计.docx_第14页
第14页 / 共23页
牛头刨床课程设计.docx_第15页
第15页 / 共23页
牛头刨床课程设计.docx_第16页
第16页 / 共23页
牛头刨床课程设计.docx_第17页
第17页 / 共23页
牛头刨床课程设计.docx_第18页
第18页 / 共23页
牛头刨床课程设计.docx_第19页
第19页 / 共23页
牛头刨床课程设计.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

牛头刨床课程设计.docx

《牛头刨床课程设计.docx》由会员分享,可在线阅读,更多相关《牛头刨床课程设计.docx(23页珍藏版)》请在冰点文库上搜索。

牛头刨床课程设计.docx

牛头刨床课程设计

工作原理

牛头刨床是一种用于平面切削加工的机床,如图a)所示。

电动机经过皮带和齿轮传动,

带动曲柄2和固结在其上的凸轮8。

刨床工作时,由导杆机构2-3-4-5-6带动刨头6和

刨刀7作往复运动。

刨头左行时,刨刀不切削,称为空回行程,此时要求速度较高,以提高

生产率。

为此刨床采用有急回运动的导杆机构。

刨刀每切削完一次,利用空回行程的时间,

凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件

作一次进给运动,以便刨刀继续切削。

刨头在工作过程中,受到很大的切削阻力(在切削的

前后各有一段0.05H的空刀距离,见图b),而空回行程中则没有切削阻力。

因此刨头在

整个运动循环中,受力变化是很大的,这就影响了主轴的匀速转动,故需安装飞轮来减小主

轴的速度波动,以提高切削质量和减少电动机容量。

(a)(b)

图d

一.设计任务

1、运动方案设计。

2、确定执行机构的运动尺寸。

3、进行导杆机构的运动分析。

4、对导杆机构进行动态静力分析。

5、汇总数据画出刨头的位移、速度、加速度线图以及平衡力矩的变化曲线。

二.设计数据

本组选择第六组数据

表1

方案

1

2

3

4

5

6

7

8

9

导杆机构运动分析

转速n2(r/min)

48

49

50

52

50

48

47

55

60

机架lO2O4(mm)

380

350

430

360

370

400

390

410

380

工作行程H(mm)

310

300

400

330

380

250

390

310

310

行程速比系数K

1.46

1.40

1.40

1.44

1.53

1.34

1.50

1.37

1.46

连杆与导杆之比

lBC/lO4B

0.25

0.3

0.36

0.33

0.3

0.32

0.33

0.25

0.28

表2

方案

导杆机构的动态静力分析

lO4S4

xS6

yS6

G4

G6

P

yp

JS4

mm

N

mm

kg.m2

1,2,3

0.5lO4B

240

50

200

700

7000

80

1.1

4,5,6

0.5lO4B

200

50

220

800

9000

80

1.2

7,8,9

0.5lO4B

180

40

220

620

8000

100

1.2

方案

飞轮转动惯量的确定

δ

nO’

z1

zO"

z1’

JO2

JO1

JO"

JO’

r/min

Kg.m2

1-5

0.15

1440

10

20

40

0.5

0.3

0.2

0.2

6-10

0.15

1440

13

16

40

0.5

0.4

0.25

0.2

11-15

0.16

1440

15

19

50

0.5

0.3

0.2

0.2

三.设计要求

1、运动方案设计

根据牛头刨床的工作原理,拟定1~2个其他形式的执行机构(连杆机构),给出机构简图并简单介绍其传动特点。

2、确定执行机构的运动尺寸

根据表一对应组的数据,用图解法设计连杆机构的尺寸,并将设计结果和步骤写在设计说明书中。

注意:

为使整个过程最大压力角最小,刨头导路位于导杆端点B所作圆弧高的平分线上(见图d)。

3、进行导杆机构的运动分析

根据表一对应组的数据,每人做曲柄对应的1到2个位置(如图2中1,2,3,……,12各对应位置)的速度和加速度分析,要求用图解法画出速度多边形,列出矢量方程,求出刨头6的速度、加速度,将过程详细地写在说明书中。

4、对导杆机构进行动态静力分析

根据表二对应组的数据,每人确定机构对应位置的各运动副反力及应加于曲柄上的平衡力矩。

作图部分与尺寸设计及运动分析画在同一张纸上(2号或3号图纸)。

提示:

如果所给数据不方便作图可稍微改动数据,但各组数据应该一致,并列出改动值。

5、数据总汇并绘图

最后根据汇总数据画出一份刨头的位移、速度、加速度线图以及平衡力矩的变化曲线。

6、完成说明书

每人编写设计说明书一份。

写明组号,对应曲柄的角度位置。

四.设计方案选定

如图2所示,牛头刨床的主传动机构采用导杆机构、连杆滑块机构组成的5杆机构。

采用导杆机构,滑块与导杆之间的传动角r始终为90o,且适当确定构件尺寸,可以保证机构工作行程速度较低并且均匀,而空回行程速度较高,满足急回特性要求。

适当确定刨头的导路位置,可以使图2

压力角

尽量小。

五.机构的运动分析

 

选择第三组数据求得机构尺寸如下

θ=180°(k-1/k+1)=30°

lO2A=lO4O2sin(θ/2)=111.3mm

lO4B=0.5H/sinθ/2)=773.0mm

lBC=0.36lO4B=278.28mm

lO4S4=0.5lO4B=386.5mm

曲柄位置“3”速度分析,加速度分析(列矢量方程,画速度图,加速度图)

曲柄在3位置时的机构简图如左图所示由图量得此位置的位移S=86.9mm,Lo4A=514.7mm。

设力、加速度、速度的方向向右为正。

1.速度分析

取曲柄位置“3”进行速度分析。

因构件2和3在A处的转动副相连,故υA3=υA2,其大小等于ω2lO2A,方向垂直于O2A线,指向与ω2一致。

ω2=2πn2/60rad/s=5.23(rad/s)

υA3=υA2=ω2·lO2A=0.582m/s

取构件3和4的重合点A进行速度分析。

列速度矢量方程,得

υA4=υA3+υA4A3

大小?

√?

方向⊥O4A⊥O2A∥O4B

取速度极点P,速度比例尺µv=0.005(m/s)/mm,作速度多边形如图1-2

图1—2

则由图1-2知:

υA3=lpA3·μv=0.582m/sυA4A3=la3a4·μv=0.198m/s

ω4=υA4A3/lO4A=0.976(rad/s)υB=ω4.lO4B=0.754(m/s)

取5构件作为研究对象,列速度矢量方程,得

Vc=VB+VcB

大小?

√?

方向∥XX⊥O4B⊥BC

作速度多边行如图1-2,则由图1-2知

υC=lpc·μv=0.728m/sω5=υCB/lBC=0.701rad/s

2.加速度分析

取曲柄位置“3”进行加速度分析。

因构件2和3在A点处的转动副相连,

其大小等于ω22lO2A方向由A指向O2。

aA4A3K=2ω4υA4A3=0.386(m/s2)aA3=ω22·lO2A=3.04m/s2

aA3=ω42·lO4A=0.303(m/s2)

取3、4构件重合点A为研究对象,列加速度矢量方程得:

aA4=aNA4+aTA4=aA3+aKA4A3+aRA4A3

大小√?

√√?

方向A→O4⊥O4AA→O2⊥O4A∥O4A

取加速度极点为P’,加速度比例尺µa=0.005((m/s2)/mm),

作加速度多边形如图1-3所示.则由图1-3知

aA4=uap’a4’=0.48(m/s2)

aB=uapb’=0.723(m/s2)

aS4=0.5aB=0.362(m/s2)

a4=atA4/lo4A=0.727(m/s2)

aC=aB+aCB+atCB

大小:

√√?

方向:

//xx√C→B⊥BC

aC=uap’c’=0.646(m/s2)

图1—3

 

曲柄位置“9”速度分析,加速度分析(列矢量方程,画速度图,加速度图)

曲柄在9位置时的机构简图如左图所示由图量得此位置的位移S=375.38mm,Lo4A=358.61mm。

设力、加速度、速度的方向向右为正。

1.速度分析

取曲柄位置“9”进行速度分析。

因构件2和3在A处的转动副相连,故υA3=υA2,其大小等于ω2lO2A,方向垂直于O2A线,指向与ω2一致。

ω2=2πn2/60rad/s=5.23(rad/s)

υA3=υA2=ω2·lO2A=0.582m/s

取构件3和4的重合点A进行速度分析。

列速度矢量方程,得

 

υA4=υA3+υA4A3

大小?

√?

方向⊥O4A⊥O2A∥O4B

取速度极点P,速度比例尺µv=0.005(m/s)/mm,作速度多边形如图1-4

图1—4

则由图1-4知:

υA3=lpA3·μv=0.582m/sυA4A3=la3a4·μv=0.51m/s

ω4=υA4A3/lO4A=0.80(rad/s)υB=ω4.lO4B=0.62(m/s)

取5构件作为研究对象,列速度矢量方程,得

Vc=VB+VcB

大小?

√?

方向∥XX⊥O4B⊥BC

作速度多边行如图1-2,则由图1-2知

υC=lpc·μv=0.5978m/sω5=υCB/lBC=0.59rad/s

2.加速度分析

取曲柄位置“9”进行加速度分析。

因构件2和3在A点处的转动副相连,

其大小等于ω22lO2A方向由A指向O2。

aA4A3K=2ω4υA4A3=0.816(m/s2)aA3=ω22·lO2A=3.04m/s2

aA4n=ω42·lO4A=0.23(m/s2)

取3、4构件重合点A为研究对象,列加速度矢量方程得:

aA4=aNA4+aTA4=aA3+aKA4A3+aRA4A3

大小√?

√√?

方向A→O4⊥O4AA→O2⊥O4A∥O4A

取加速度极点为P’,加速度比例尺µa=0.005((m/s2)/mm),

作加速度多边形如图1-5所示.则由图1-5知

aA4=uap’a4’=1.26m/s2

aB=uapb’=2.73m/s2

aS4=0.5aB=1.36m/s2

a4=atA4/lo4A=3.45m/s2

aC=aB+aCB+atCB

大小:

√√?

方向:

//xx√C→B⊥BC

aC=uap’c’=2.72(m/s2)

 

六、机构动态静力分析

一、首先依据运动分析结果,计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:

右上)、构件6的惯性力矩FI6(与aC反向)。

F14=m4aS4=G4/g.aS4=200/10×0.362=7.24(N)

M14=a4JS4=0.727×1.1N·m=0.7997(N/m)

Lh4==

=0.7997/7.24=110.45(mm)

FI6=m6aS6=G6/g.aS6=70×0.646=45.22(N)

1.取构件5、6基本杆组为示力体(如图所示)

因构件5为二力杆,只对构件(滑块)6做受力分析即可,首先列力平衡方程:

FR65=—FR56FR54=—FR45

FR16+Fr+F16+G6+FR56=0

大小?

√√√?

方向⊥xx∥xx∥xx⊥x∥BC

按比例尺μF=10N/mm作力多边形,如图所示,求出运动副反力FR16和FR56。

 

俩图均为杆件5,6的受力分析。

按比例尺10N/mm作里多边形

FR16=10×87.9=879(N)

FR56=10×349.54=3495.4(N)

对C点列力矩平衡方程:

FR16lx+F16yS6=FryF++G6xS6

Lx=507.097(mm)

2.取构件3、4基本杆组为示力体(如图所示)

首先取构件4,对O4点列力矩平衡方程(反力FR54的大小和方向为已知),求出反力FR34:

FR54=—FR45FR34=—FR43

构件4的受力分析

FR54×lh1+FI4×lh2+G4×lh3﹣FR34lO4A=0

Fr34=5156.51(N)

 

再对构件4列力平衡方程,按比例尺μF=10N/mm作力多边形如图所示。

求出机架对构件4的反力FR14

 

ΣF=0FR54+G4+FI4+FR34+FR14=0

大小√√√√?

方向∥BC⊥xx√⊥O4A?

FR14=10X198.4=1984(N)

3.取构件2为示力体

FR34=—FR43FR32=—FR23

FR23+FR12=0FR12=5156.51(N)Σ=0F

FR32×lh-Mb=0

Mb=500.00(N.m)

二、计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:

右上)、构件6的惯性力矩FI6(与aC反向)。

F14=m4aS4=27.2(N)

M14=a4JS4=3.46×1.1N·m=3.806(N/m)

Lh4=M14/F14=139.926(mm)

FI6=m6aS6=190.4(N)

1.取构件5、6基本杆组为示力体(如图所示)

因构件5为二力杆,只对构件(滑块)6做受力分析即可,首先列力平衡方程:

构件5.6的受力简图

由于FR65=—FR56FR54=—FR45Σ=oF

FR16+Fr+F16+G6+FR56=0

大小?

√√√?

方向⊥xx∥xx∥xx⊥xx∥BC

因此可以做出里多边形:

按比例尺μF=10N/mm作力多边形,如图所示,求出运动副反力FR16和FR56。

FR16=10×71.02=710.2(N)

FR56=10×19.43=194.3(N)

对C点列力矩平衡方程:

Σ=0Mc

FR16lx+FI6yS6=G6xS6

LX=223.14(mm)

 

首先取构件4,对O4点列力矩平衡方程(反力FR54的大小和方向为已知),求出反力FR34:

FR54=—FR45FR34=—FR43

Σ=04OMFR54×lh1+FI4×lh2+G4×lh3﹣FR34lO4A=0

FR34=284.56(N)

再对构件4列力平衡方程,按比例尺μF=10N/mm作力多边形如图所示。

求出机架对构件4的反力FR14:

Σ=0FFR54+G4+FI4+FR34+FR14=0

大小√√√√?

方向∥BC⊥xx√⊥O4A?

 

FR14=10×61.7=617(N)

3.取构件2为示力体(如图所示)

FR34=—FR43FR32=—FR23

FR23+FR12=0FR12=284.56(N)Σ=0F

FR32×lh-Mb=0

Mb=20.86(N.m)

七.数据总汇并绘图

统计12人的数据得到如下表

位置

1

2

3

4

5

6

7

8

9

10

11

12

νc(m/s)

0

0.43

0.728

0.60

0.807

0.7

0.44

-0.15

-0.60

-1.24

-1.29

-0.638

ac(m/s2)

5.4

3.26

0.646

0.55

-1.35

-3.66

-5.24

-5.15

-2.72

-1.76

4

4.941

s(mm)

0

23.5

86.9

167

241.3

317.9

378.1

400

357.4

267

131.2

62

Mr(N·m)

0

69

500

562.2

564.5

504.37

256.5

12.6

20.86

32.2

-67.3

-26.03

根据以上数据用软件绘图得如下:

速度——位置变化曲线

加速度——位置变化曲线

位移——位置变化曲线

平衡力矩——位置变化曲线

八、飞轮的设计

1.确定△Wmax

1>将各点的平衡力矩画在坐标纸上,如下图。

平衡力矩所做的功可以通过数据曲线与横坐标之间所夹得面积之和求的。

依据在一个周期内及360°内,曲柄驱动力矩所做的功等于阻力力矩所做的功,即可求的驱动力矩Md。

在下图中,横坐标为曲柄转角,一个周期2π,将一个周期变成180份,纵坐标轴为力矩:

Md=ΣSi/2π=【(x1+x2)/2+(x2+x3)/2…………】2°π/180°/2π=199.7N.m

2>根据盈亏功的原理,求得各盈亏功值,并做能量指示图,以曲柄的平均驱动力矩为分界线,求出各区段盈亏功值

△W1=104.72N.m

△W2=733.03N.m

△W3=471.23N.m

曲柄的平均驱动力矩Md=199.7N.m

曲柄的最大驱动力矩Md=570N.m

△Wmax=733.03N.m

求集中在A点的等效转动惯量

由公式:

可知等效转动惯量:

题目给出:

又由定轴轮系的传动比:

可得:

由最大盈亏功可以求得飞轮的转动惯量

JF>=[900△Wmax]/(π2n2[﹠])—JC=167.93(N.m2)

因此可以设计出所需要求的飞轮。

九.参考文献

1.《机械原理》(第七版)吴克坚等主编高等教育出版社

2.《机械原理课程设计》曲继方主编,机械工业出版社

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2