PLC实现步进电机的正反转和调整控制.docx

上传人:b****2 文档编号:3202161 上传时间:2023-05-05 格式:DOCX 页数:9 大小:193.84KB
下载 相关 举报
PLC实现步进电机的正反转和调整控制.docx_第1页
第1页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第2页
第2页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第3页
第3页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第4页
第4页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第5页
第5页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第6页
第6页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第7页
第7页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第8页
第8页 / 共9页
PLC实现步进电机的正反转和调整控制.docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

PLC实现步进电机的正反转和调整控制.docx

《PLC实现步进电机的正反转和调整控制.docx》由会员分享,可在线阅读,更多相关《PLC实现步进电机的正反转和调整控制.docx(9页珍藏版)》请在冰点文库上搜索。

PLC实现步进电机的正反转和调整控制.docx

PLC实现步进电机的正反转和调整控制

实训课题三PLC实现步进电机正反转和调速控制

一、实验目的

1、掌握步进电机的工作原理

2、掌握带驱动电源的步进电机的控制方法

3、掌握DECO指令实现步进电机正反转和调速控制的程序

二、实训仪器和设备

1、FX2N-48MRPLC一台

2、两相四拍带驱动电源的步进电机一套

3、正反切换开关、起停开关、增减速开关各一个

三、步进电机工作原理

步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。

从图中可以看出,它分成转子和定子两部分。

定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。

共有3对。

每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。

可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。

反应式步进电动机的动力来自于电磁力。

在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。

对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。

把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。

错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。

本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。

因为中间连接的电磁铁的两根线不是直接连接的,是采用在转轴的位置用一根滑动的接触片。

这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了,所以电磁铁的N极S极就和以前相反了。

但是电机上下的磁铁是不变的,所以又可以继续吸引中间的电磁铁。

当电磁铁继续转,由于惯性又转过了头,所以电极又相反了。

重复上述过程就步进电机转了。

根据这个原理,如图3-2所示,两相步进电机的转动步骤,以正转为例:

由图可见,现相异步电机正转过程分为四个步骤,即A相正方向电流、B相正方向电流、A向反方向电流和B相反方向电流。

反转工作的顺序与之相反。

A、B两相线圈不是固定的电流方向,这与其它步进电机的控制逻辑有所不同。

因此,控制步进电机转动时,必须考虑用换相的思路设计实验线路。

可以根据模拟驱动电路的功能和plc必须的逻辑关系进行程序设计。

四、采用步进电机驱动器的控制方式

利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态。

其中:

步进电机的方向控制,只需要通过控制U/D端的On和Off就能决定电机的正转或反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE信号就能使电机处于自由状态。

因此PLC的控制程序相当简单,只需通过PLC的输出就能控制步进电机的方向、转速和步数。

不必通过PLC控制电机换相的逻辑关系,也不必另外添加驱动电路。

实训面板见图3-4,梯形图见图3-5。

本程序是利用D0的变化,改变T0的定时间隔,从而改变步进电机的转速。

通过两个触点比较指令使得D0只能在10~50之间变化,从而控制步进间隔是1S~5S之间,I/O分配表见表3-1。

表3-1I/O分配表

输入点

输出点

X0

正转/反转方向

Y0

电机控制脉冲

X1

电机转动

Y1

正转/反转运行

X2

电机停止

X4

频率增加

X5

频率减少

图3-5梯形图

五、采用PLC直接控制步进电机方式

对于两相步进电机控制,根据其工作原理,必须考虑其换向的控制方式,因此将其步骤用代号分解,则为:

实现电流方向A+→A-、

实现电流方向B+→B-、

实现电流方向A-→A+、

实现电流方向B-→B+。

如果反转则按照

的顺序控制。

PLC的I/O分配表按照表3-2,分配图按照图3-6,梯形图见图3-7。

表3-2PLC的I/O分配表

输入点

输出点

X0

正转运行

COM1

DC+12V

X1

反转运行

Y0

A+

X2

自动/手动

Y1

B+

X3

单步运行

Y2

A-

X4

频率增加

Y3

B-

X5

频率减少

COM2

DC+12VGND

Y4

A-

Y5

B-

Y6

A+

Y7

B+

步进电机正反转和调速控制的梯形图如图3-7所示,程序中采用积算定时器T246为脉冲发生器,因系统配置的PLC为继电器输出类型,其通断频率过高有可能损坏PLC,故设定范围为K200ms~1000ms,则步进电机可获得1~10步/秒的变速范围,(X0为ON时,正转,X1为ON时;反转)。

X0为ON时,输出正脉冲列,步进电机正转。

当X0为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值(首次为0),指定M10输出,Y0、Y4为ON,步进电机A相通电,且实现电流方向A+→A-;D1加1,然后,T246马上自行复位,重新计时,时间到,T246又导通,再执行DECO指令,根据D1数值(此次为1),指定M11输出,Y1、Y5为ON,步进电机B相通电,且实现电流方向B+→B-;D1加1,T246马上又自行复位,重新计数,时间到,T246又导通,再执行DECO指令,根据D1数值(此次为2),指定M12输出,Y2、Y6为ON,步进电机A相通电,且实现电流方向A-→A+;D1加1,T246马上又自行复位,重新计时,时间到,T246又导通,再执行DECO命令,根据D1数值(此次为3),指定M13输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生。

X1为ON时,输出反脉冲列,步进电机正转。

当X1为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值(首次为0),指定M10输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;依此类推,完成实现A相反方向电流、B相正方向电流、A相正方向电流三个脉冲列输出;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生。

当X2为ON时,程序由自动转为手动模式,当X0(X1)为ON时,每点动一次X3,对D1数值(首次为0)加1,分别指定M10、M11、M12及M13输出,从而完成一轮正(反)脉冲系列的产生。

第73步中,当X4为ON,M8012为ON,M4为ON,且D0当前值

第88步中,当X5为ON,M8012为ON,M4为ON,且D0>K200,由D0即减1。

六、程序调试及执行

调速时按X4或X5按钮,观察D0的变化,当变化值为所需速度时释放。

如动作情况与控制要求一致表明程序正确,保存程序。

如果发现程序运行与控制要求不符,应仔细分析,找出原因,重新修改,直到程序与控制要求相符为止。

七、实训思考练习题

如果调速需经常进行,可将D0的内容显示出来,试设想方案,修改程序,并实验。

图3-7步进电机正反转和调速控制

程序说明

1、步骤0,指定脉冲序列输出顺序移位值;

2、当X0为ON,输出正脉冲序列,电机正转;当X1为ON,输出负脉冲序列,电机反转;

3、当X2为ON,程序由自动转为手动模式,由X3状态单步触发电机运转;

4、当X4为ON,如D0小于1000,每100ms对D0加1,从而延长每脉冲输出的时间间隔,降低电机的转速;

5、当X5为ON,如D0大于200,每100ms对D0减1,从而缩短每脉冲输出的时间间隔,加快电机的转速;

6、T0为频率调整限制。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2