本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx

上传人:b****1 文档编号:3250119 上传时间:2023-05-05 格式:DOCX 页数:21 大小:849.85KB
下载 相关 举报
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第1页
第1页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第2页
第2页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第3页
第3页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第4页
第4页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第5页
第5页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第6页
第6页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第7页
第7页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第8页
第8页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第9页
第9页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第10页
第10页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第11页
第11页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第12页
第12页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第13页
第13页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第14页
第14页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第15页
第15页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第16页
第16页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第17页
第17页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第18页
第18页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第19页
第19页 / 共21页
本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx

《本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx》由会员分享,可在线阅读,更多相关《本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx(21页珍藏版)》请在冰点文库上搜索。

本科毕业论文gps rtk和全站仪应用在土地测量上评价评估.docx

本科毕业论文gpsrtk和全站仪应用在土地测量上评价评估

GPSRTK和全站仪应用在

土地测量上评估

DepartmentofTechnicalPrograms,BigaVocationalSchool,C¸anakkaleOnsekizMartUniversity,Biga,C¸anakkale,Turkey.

DickinsonResearchExtensionCenter,NorthDakotaStateUniversity,DickinsonND58601,

 

实时动态全球定位系统(RTK-GPS)和全站仪(TS)在GIS环境调查的应用比较。

在地质统计学的评价方法中包括,用球形的克立格法,指数法和高斯模型法。

本次调查结果表明,面积为3.5公顷或更小的最好的解释是高斯模型,而较大的地区需要一个球形模型。

可以观察到,高程误差大于60厘米和水平误差大于30厘米的测量点区域被淘汰。

为了增加精确度每次测量点的最佳区域是20×20m2。

研究表明,这种情况下可能会导致不准确的调查成本超过估计高达27%。

1引言

许多农业工程实践要求大量的投资。

因此,在设计和建设项目的时候准确的成本估计是至关重要的。

在一个不准确的调查结果的地形图并不代表建筑面积。

地形图中也已被用来描绘子场管理区(弗雷斯等2001年)和特定地点的土地管理(弗伦岑等1998)。

实时动态全球定位系统(RTK-GPS)是地形图测量的一个组成部分。

RTK是一个测量技术,保持一定的精度是必须的。

在RTK,校正后的GPS信号被实时从一个已知的位置的基站接收机传送一个或更多的流动站接收机。

随着近年来的发展基于RTK-GPS系统,通过补偿大气延迟,轨道错误和其他变量的GPS几何,水平精度可以实现1厘米,(Ehsaniet人,2004年)。

Satalich和Ricketson教授(1998)报道,依赖时间性的系统误差可能影响RTK-GPS系统的高程精度。

克拉克和李(1998年)确定了地形的面积的使用RTK-GPS设备与海拔地区4-9厘米的误差。

Wilson等人(1998)即使是小的差异产生RTK-GPS在个别点的海拔可能会导致很大的差异等参数坡度和集水区。

虽然RTK-GPS系统的成功应用,可以提高地形测量的质量,有情况下,这些系统的准确性是值得怀疑的。

自然的或人为的障碍,如树木和建筑物可以堵塞所有的RTK系统,使其有限或根本无法使用。

在这种情况下,使用全站仪(TS中)。

Borgelt等人(1996年)比较RTK-GPS系统和全站仪的测量精度。

他们得到的高程误差12厘米。

精确的测量可以使用TS。

然而,现场条件并不总是能达到仪器的精度。

因此,这些系统通常被一起用来进行土地调查。

地质统计学方法,如克立格法是用来评估第二次独立调查的时间和成本的地形图的合规性。

即使克里格法并没有提供第二次调查的明确答案,,它是一种有效而廉价的技术(巴顿等人,1999)。

为了计算的准确性,用地质统计学技术的克里格法得到的地形地表调查数据,用于创建预测的地图和空间统计。

克里格法是一种不同的方式来思考是确定性的内插预测。

克里格法,预测的值取决于两个因素:

趋势和额外的元素的变异性。

例如,有一座小山的顶部,海拔从低海拔上升的趋势。

不过,也有可能是因为峡谷,溪流以及其他有限元分析的2006年(ESRI)的变化。

可能是考虑到这些变化,克里格分配权重的一个子集附近的点被称为“最近的邻居(戴维斯和高利衡,1984)。

为了找到权重,测量点之间的空间依赖性的信息应该是已知的(多德1984)。

可以用一个半方差函数来表达这种空间依赖性(BRAS和罗德里格斯伊图尔韦1985)。

半方差函数可以表示为(巴顿等1999):

(1)

其中γ(dij)是半方差函数的点Pi和Pj和高程Zi和Zj和距离d,基于“内在的假设”(德尔霍姆1983),等式

(1)可以被写为:

(2)

其中N表示测量的点对数。

按照公式

(2),半方差函数的一半就是距离为d的两个点之间的仰角平方差的预期。

半方差函数的最大值,称为S,达到在距离称为范围R。

范围是指需要观察Zi和Zj被认为是不相关的(Barton等1999)的平均值。

最好的半方差函数模型,可以选择观察的根均方值与不同滞后大小和数字(ESRI2006)的试验和错误的方法。

塞兰奇等人(2005)和Johnston等人(1996)报道,滞后大小×的滞后阶数的应该小于在数据库中的最长的距离的二分之一。

后面数据的大小和数量是确定的,其他半方差函数模型参数,窗台,金块,范围和拟合模型的类型可以优化观测的最小均方根误差(RMSE)。

一个典型的半方差函数和其在图1中所示的参数。

图1一个典型的半方差函数和它的参数。

图2数据分布的表示

常见的半方差函数模型包括球形的,指数的和高斯的(Christakos1984)。

一旦这些半方差函数模型的最佳参数被确定下来,这种交叉验证的技术可用于选择完美的半方差函数(戴维斯,1987年,1999年Bartonet人)。

图3曲面拟合办法

本文的重点是评估RTK-GPS和TS系统在农业工程设计实践中动态的精度的测量土地,。

实现这一目标的实现以下具体指标:

●通过调查RTK-GPS和ITS系统获得数据的准确性评价。

●利用地理信息系统和统计方法来执行上述数据质量分析。

●探究调查数据的质量对工程设计的影响。

2、材料和方法

2.1测试站点定位和数据收集

在美国北达科他州的距离Lefor附近一块儿50公顷的面积土地被选为试验现场,因为那里没有自然的或人为的障碍遮挡卫星信号。

使用Trimble5700RTK-GPS(Trimble导航有限公司,美国加州桑尼维尔市)的调查系统对该地区进行了调查。

一个基站和4个参考点,建立在调查区的最高点。

调查点之间的距离是15米。

RTK-GPS的连续测量模式下,一个人使用GARMINGPSMAP76C(Garmin国际公司,Olathe的堪萨斯州)的手持GPS装置,保持5-10公里/小时的速度运动(Renschler等人,2002)。

为了保证的测量点之间的距离相等。

引用4个参考点,尼康NPL-350全站仪(尼康Geotecs有限公司,东京,日本)对调查的区域进行现场校准,该区域的西北部分占地约3.5公顷。

GPS调查车辆跟踪和手持式GPS装置用来收集TS读数尽可能接近的RTK-GPS测量点。

2.2数据处理

最初可用的地形数据集存储点的测量。

每个点北向,东向和高程值。

做数据处理的目的是创建等高线图并用于设计引水渠道,2006年的Autodesk土地桌面系统。

创建三层为50公顷面积RTK-GPS系统,在被调查的TS和RTK-GPS系统为3.5公顷。

现在起,这些层将被称为“完整的GPS,TS,部分GPS”,分别为(图2)。

部分GPS数据,使我们能够观察到的调查的那些调查点质量。

所有三个层次的北向,东向和海拔每一个点的调查数据被保存为数据库文件(DBF)在Autodesk。

然后,ArcGIS的GeostatisticalAnalyst扩展模块被用来进行地质统计学分析。

在分析中,结构化的过程随后asshown在图3中。

图4全部和部分RTK-GPS等高线地图

图5清洁引水渠道布局后

最后,调查质量的影响,在工程设计中,创建一个189米干净的水导流明渠以4:

1的边坡比在所有这三个数据集(层)。

挖/填在Autodesk软件进行计算。

3结果与讨论

图6净水分水渠剖面

图7通道切体积部分,完整的RTK-GPS的地图。

图表一显示了半方差函数由于球形、指数、高斯模型、交叉验证统计产生的很小的均方根误差。

交叉验证提供了一个想法“多好”模型预测创建表面时未知值。

在交叉验证模型省略了一个点顺序,预测其值使用其余的数据,然后比较了预测值和观测值。

在一个最好的模型中,平均错误应该接近于零;均方根和平均标准差应该尽可能小。

最小的均方根误差值由完整的RTK-GPS测量用球状模型(格瓦特2000)获取。

交叉验证的表格还显示这个区域的大小和数量的读数可以导致不同的半变差函数模型。

尽管三次测量读取时间间隔是相似的,完整的RTK-GPS数据是由一个球面模型解释而其他的是用高斯模型。

数表4显示了部分和完整RTK-GPS测量的不同。

局部等值线图使用相同的测量点在一个较小的区域可引起高达30厘米的水平误差,和0.7904的均方根误差,而相同数量的点对完整轮廓地图是0.4144。

分析表明,有更多的读数的较大地区,地图质量更好的。

图8调查点的数量和削减量的关系

同时还发现,一个小数量的测量点和一个较小的区域对垂直精度有明显的效果。

清洁引水渠道剖面代表三次测量数据的垂直精度(数表5和6)。

正如预测的一样,全站仪和部分RTKGPS地图因产生了类似的地面剖面。

为了进一步观察分割成不同测量区域对计算体积的影响(如图8),分别选择33,62,80,100,和162个部分勘察区。

完整的调查区域有749个调查点,分割后的体积为1460m3。

随着测量点的数目减小,切割的体积增大。

3.5公顷的面积分为100个测量点和50公顷分为749个调查点的区别是可以忽略不计。

因此,每3.5公顷区100个调查点或每20米的距离一个测量点得到的结果是相识的。

4总结

使用调查的数据建立精确的地形图必须特别小心,因为这是所有的农业设计的关键。

地理分析包括测量区域的面积和任何对半方差模型的影响数据。

此外,它的目的是观察不同的测量精度对工程设计的质量和成本估算的影响。

不同的区域的大小和读数的数量表现出完全不同的结果。

●包括RTK-GPS和TS两种技术的比较表明,基于RTK-GPS的调查不仅实用,速度快,而且得到更精确的地形图设计的目的。

因此,RTK-GPS系统的投资是值得的。

●即使在同一地区进行了调查,50公顷的RTK-GPS测量不仅用一个球形的半方差函数模型描述,同时采用高斯模型描述。

因此,对于一个成功的调查,不应该只是限制施工现场的区域。

提高面积较大的区域的调查质量。

●调查技术,区域和测量点之间的距离的不同,导致在高程误差可能会达到60厘米,这样会产生成本估算和实际成本之间的巨大差异。

参考文献

BartonJMH,BuchbergerSGandLangeMJ1999Esti-mationoferrorandcomplianceinsurveysbyKriging;J.Surv.Eng.125

(2)87–108.

BorgeltSC,HarrisonJD,SudduthKAandBirrellSJ1996EvaluationofGPSforapplicationsinprecisionagriculture;Appl.Eng.Agric.12(6)633–638.

BrasRLandRodriguez-IturbeI1985RandomFunctionsandHydrology(Reading,Mass.:

AddisonWesley),pp.359–425.

ChristakosG1984Ontheproblemofpermissiblecovarianceandvario-grammodels;WaterResour.Res.20

(2)251–265.

ClarkRLandLeeR1998DevelopmentoftopographicalmapsforprecisionfarmingwithkinematicGPS;Trans.ASAE41(4)909–916.

DavisB1987Usesandabusesofcross-validationingeo-statistics;Math.Geol.19(3)241–248.

DavisMWandCulhanePG1984ContouringverylargedatasetsusingKriging;Geo-statisticsforNaturalResourcesCharacterizations,Part2.(Dordrecht,TheNetherlands:

Reidel),pp.599–619.

DelhommeJP1983Kriginginthehydrosciences;In:

FlowthroughPorousMedia(ed.)GPFindler,pp.99–113.

DowdPA1984ThevariogramandKriging:

Robustandresistantestimators;Geo-statisticsforNaturalResourcesCharacterzations,Part2.(Dordrecht,TheNetherlands:

Reidel),pp.91–106.

EhsaniMR,UpadhyayaSKandMattsonML2004SeedlocationmappingusingRTKGPS;Trans.ASAE47(3)909–914.

ESRI2006IntroductiontoArcGISgeospatialanalystextension;EnvironmentalSystemsResearchInstitute,C.

FraisseCW,SudduthKAandKitchenNR2001Delineationofsite-specificmanagementzonesbyuseofunsupervisedclassificationoftopographicattributesandsoilelectricalconductivity;Trans.ASAE44

(1)155–166

FranzenDW,CihacekLJ,HofmanVLandSwensonLJ1998Topography-basedsamplingcomparedwithgridsamplinginthenorthernGreatPlains;J.Prod.Agric.11(3)364–370.

GoovaertsP2000Geo-statisticalapproachesforincorporatingelevationintothespatialinterpolationofrainfall;J.Hydrol.228(1–2)113–129.

JohnstonK,HoefJMV,KrivoruchkoKandLucasN1996UsingArcGISGeo-statisticalAnalysis(NewYork,N.Y:

ESRI)

ND-NSPMP2005NorthDakotanonpointsourcepollutionmanagementprogram;Bismarck,NorthDakota:

NorthDakotaDepartmentofHealth.

RenschlerCS,FlanaganDC,EngelBA,KramerLAandSudduthKA2002Site-specificdecision-makingbasedonRTKGPSsurveyandsixalternativeelevationdatasources:

Watershedtopographyanddelineation;Trans.ASAE45(6)1883–1895.

SarangiA,CoxCAandMadramootooCA2005Geo-statisticalmethodsforpredictionofspatialvariabilityofrainfallinamountainousregion;Trans.ASAE48(3)943–954.

SatalichJandRicketsonR1998Fieldtestoftrimble4000real-timekinematicGPSsurveysystem;J.Surv.Eng.124

(1)40–48.

WilsonJP,SpangrudDJ,NielsenGA,JacobsenJSandTylerDA1998Globalpositioningsystemsam-plingintensityandpatterneffectsoncomputingtopographicattributes;SoilSci.Soc.Amer.J.621410–1417.

EvaluationofRTK-GPSandTotalStationfor

applicationsinlandsurveying

DepartmentofTechnicalPrograms,BigaVocationalSchool,C¸anakkaleOnsekizMartUniversity,Biga,C¸anakkale,Turkey.

DickinsonResearchExtensionCenter,NorthDakotaStateUniversity,DickinsonND58601,

AccuraciesofReal-TimeKinematicGlobalPositioning(RTK-GPS)systemandTotalStation(TS)wereinvestigatedinGISenvironment.Ingeostatisticalevaluations,Krigingmethodwasusedwithspherical,exponential,andGaussianmodels.Thesurveyresultsdemonstratedthatanareaof3.5haorsmallercanbebestexplainedwithGaussianmodel,whilethelargerareasrequireasphericalmodel.Averticalerrorof60cmandahorizontalerrorof30cmcanbeobservedwhenthesurveypointsoutsidetheconstructionareaareeliminated.Theoptimumareapersurveypointwascalculatedtobe20×20m2toincreasetheaccuracy.Thiscasestudyshowedthataninaccuratesurveycanresultcostoverestimationsupto27%.

1.Introduction

Manyagriculturalengineeringpracticesrequireasubstantialinvestment.Therefore,anaccuratecostestimateisvitalfordesignandconstructionoftheprojects.Aninaccuratesurveyresultsinatopo-graphicmapthatdoesnotrepresenttheconstructionarea.Topographicmapshavealsobeenusedtodelineatesub-fieldmanagementzones(Fraisseetal2001)andsite-specificsoilmanagement(Franzenetal1998).

TheReal-TimeKinematicGlobalPositioningSystem(RTK-GPS)isanintegralpartoftopo-graphicsurveys.RTKisatechniqueemployedinpracticeswhereprecisionisamust.InRTK,correctedGPSsignalsaretransmittedinrealtimefromabasereceiverataknownlocationtooneormoreroverreceivers.WiththerecentdevelopmentsinRTK-basedGPSsystems,ahorizontalaccuracyof1cmcanbeachievedbycompensatingforatmosphericdelay,orbitalerrorsandothervariablesinGPSgeometry(Ehsanietal2004).

SatalichandRicketson(1998)reportedthattime-dependentsystematicerrorsmayaffecttheverticalaccuracyofRTK-GPSsystems.ClarkandLee(1998)determinedthetopographyoffieldsizeareasusingRTK-GPSequipmentwithelevationerrorsof4–9cm.Wilsonetal(1998)reportedthatevensmalldifferencesinRTK-GPSderivedelevationatindividualpointscanresultbigdifferencesinsuchparametersasslopegradientandcatchmentarea.

AlthoughsuccessfulapplicationofRTK-GPSsystemscanincreasethequalityofatopographicsurvey,therearecaseswheretheaccuracyofthesesystemsisquestionable.Anyblockagefromnaturalorman-madeobstaclessuchastreesandbuildingscanmakeuseofRTKsystemlimitedorimp

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2