现浇箱梁支架计算完整版Word文档格式.docx

上传人:b****1 文档编号:3328339 上传时间:2023-05-01 格式:DOCX 页数:19 大小:213.66KB
下载 相关 举报
现浇箱梁支架计算完整版Word文档格式.docx_第1页
第1页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第2页
第2页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第3页
第3页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第4页
第4页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第5页
第5页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第6页
第6页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第7页
第7页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第8页
第8页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第9页
第9页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第10页
第10页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第11页
第11页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第12页
第12页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第13页
第13页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第14页
第14页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第15页
第15页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第16页
第16页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第17页
第17页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第18页
第18页 / 共19页
现浇箱梁支架计算完整版Word文档格式.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

现浇箱梁支架计算完整版Word文档格式.docx

《现浇箱梁支架计算完整版Word文档格式.docx》由会员分享,可在线阅读,更多相关《现浇箱梁支架计算完整版Word文档格式.docx(19页珍藏版)》请在冰点文库上搜索。

现浇箱梁支架计算完整版Word文档格式.docx

其搭设形式如下:

■*-Tr

射肘和T

ot

1.5支架系统的材料参数

4/18

1、支架钢管:

按设计要求,施工时采用满堂式碗扣支架,采用

图1.2碗扣支架布置示意图

伽I啊

t

"

•U1二

~T—"

r+

J.

1

1

XI

.■

!

.

J

/

r'

-

r

.■.

i

LB

>

■.

X

7

'

■i

k1

■■

L

..

F

I1*

,/

I,,

,■丄

 

规格为©

48x3.5m碗扣式钢管。

2、箱梁底模:

箱梁底模采用高强度竹胶板,木方上面铺设高强度竹胶板,厚均为1.5cm。

3、模板楞木:

主楞为①48x3.5m双钢管,次楞为lOXOcm木方(杉木)。

4、支架基础:

C30混凝土30cm,[20b型槽钢。

1.6荷载计算

1、箱梁砼自重

该箱梁钢筋混凝土容重按丫=25.5kN/m计算,本项目中支架纵横

间距统一为60X60cm,取截面最不利处进行计算,横梁处梁高1.9m。

Qi=25.5X1.9=48.45kN/m2

2、模板、支架等自重

根据JGJ130-2011,主梁、次梁及支撑模板自重取0.85kN/m2;

根据JGJ130-2011,hxlaxlb=1.2x0.6x0.6m时,支模架立杆每m结构自重为0.1384kN/m,支架最大高度为13.5m。

Q2=0.85+0.1384X13.5/(0.6x0.6)=6.04kN/m2

3、施工荷载

(1)施工人员及设备荷载标准值(Q3)按均布活荷载取1.0

kN/m2;

(2)浇筑和振捣混凝土时产生的荷载标准值(Q4)可采用1.0

kN/m2。

4、风荷载

作用于模板支撑架上的水平风荷载标准值,应按下式计算:

GOK=0.7Xz/S^X(0)

式中:

(---风荷载标准值(kN/m2);

(---基本风压(kN/m2),根据《建筑结构荷载规范》

(GB50009-2012),按50年一遇的风压采用取0.35kN/m2;

片--风压高度变化系数,按现行国家标准《建筑结构荷载规范》

(GB50009-2012)规定采用1.00;

W--风荷载体型系数,按现行国家标准《建筑结构荷载规范》

(GB50009-2012)规定的竖直面取0.8。

故Q5=GX=0.7X00X.8X.35=0.196kN/m2

5、荷载计算

(1)不组合风荷载时

Q=1.2X(Qi+Q2)+1.4X(Q3+Q4)=68.188kN/m2

(2)组合风荷载时

Q=1.2X(Q1+Q2)+0.9X.4X(Q3+Q4+Q5)=68.155kN/m2

1.7结构设计计算(不组合风荷载)

根据规范JGJ166-2008支架系统中受压杆件长细比不得大于

230,其他各参数见下表。

表1.2钢材的强度设计值和弹性模量(N/mm2)

Q235A钢材抗拉、抗压和抗弯强度设计值f

205

弹性模量E

2.05X05

表1.3受弯杆件的允许变形(挠度)值

构件类别

允许变形(挠度)值V

脚手板、纵向、横向水平杆

l/150,<

10mm

悬挑受弯杆件

l/400

1、立杆验算

本项目立杆为048X3.5mm(计算取现场实测最小壁厚3.0mm)

碗扣钢管,有关设计参数如下:

表1.3钢管截面特性

外径

壁厚

截面积

截面惯性矩

截面模量

回转半径

D(mm)

t(mm)

A(cm2)

I(cm4)

W(cm3)

i(cm)

48

3.0

4.24

10.78

4.49

1.59

根据规范JGJ166-2008当外侧四周及中间设置了纵、横向剪刀

撑是,立杆的计算长度按lo=h+2a计算,h为立杆步距,a为立杆伸出顶层水平杆长度。

故lo=h+2a=1.2+2@3m=1.8m

长细比入=0/i=113.2<

[入]230

经查规范JGJ166-2008附录E中Q235A级钢管轴心受压构件的

稳定系数表,得®

=0496则:

(1)强度验算

横梁处立杆受轴力最大,其立杆间距为:

60cm^60cm

N=68.188>

0.6@6=24.55kN

(T=N/(®

A)=255>

03((0.496>

24)=116.7N/mm2<

[(T]=205J/mm2满足要求

(2)挠度验算

N=24.55kN

u二NL/EA=2k5513.5106/(2.05105>

424)=3.8mm<

10mm

7/18

满足要求

(3)立杆稳定性

立杆的稳定性应符合下列公式要求:

不组合风荷载时:

N/(®

A)<

f

组合风荷载时:

A)+MW/W<

Mw=0.85x1.4klah2/10

如---风荷载标准值为0.196kN/m2;

h-----纵横水平拉杆的计算步距为1.2m;

la----立柱迎风面的间距为0.6m;

Mw--立杆由风荷载设计值产生的弯矩;

f-----钢管的抗压强度值为205kN/m2。

计算不组合风荷载时:

24.55X03/(0.4964X4)=116.7kN/mm2<

[(T]=205

kN/mm2

Mw=0.85*4>

0.196>

0.6X.22/10=0.02kN.m

Mw/W=0.02/5.081戾=3.94kN/mm2

A)+M/W=24.55X03/(0.496424)+3.94=120.6kN/mm2<

[(T]=2

05kN/mm2

2、底模验算

底模采用S=15mm厚的优质竹胶板(抗弯强度设计值

fjm=15N/mm2,弹性模量E=9XIO3N/mm2),直接搁置在100x100mm横向方木上,方木中到中间距为20cm。

(1)强度计算

简支梁在均布荷载作用下的受力简图及弯矩图如下:

受力模型图

—一

l/9qL

弯矩图

中支点横梁处(纵向方木间距200mm),受力模式按照简支梁在

均布荷载作用下的受力,取1m单位宽度进行计算,

Mmax=1/8ql2=0.125X8.188XX0.2X.2=0.34kN•m

W=bh2/6=1000X152/6=37500mm3

fmax=Mmax/W=0.34X06/37500=9.07N/mm2vj=15N/mm2

由验算可知横梁处底模强度满足要求

(2)挠度计算

根据《公路桥涵施工技术规范》(JTG/TF50-2011)规定在刚度

计算中不计入施工人员及设备荷载以及浇筑混凝土时对水平模板产

生的荷载,结构表面外露的模板其挠度不得超过模板构件跨度的

1/400,横梁处(横向方木间距200mm),最大挠度计算公式如下:

u=5qL4/(384EI)

=5>

68.188X).6>

2004/(384>

9XI03X1000X53/12)=0.336mm<

200/400=0.5mm

满足要求(按简支梁计算)

3、次楞方木验算

次楞方木平卧放置于主楞方木上,次楞规格为100mmXI00mm

(抗弯强度设计值fm为17N/mm2,顺纹抗剪设计值fv为1.7N/mm2),方木跨径(立杆纵距)在横梁处(横向方木间距200mm)跨度均为

600mm,按三跨连续梁计算其受力。

考虑现场实际施工时方木的尺寸差异,方木的力学性能乘0.9的

折减系数取值,贝心

[fm]=17X5.9=15.3N/mm2

E=9X03X).9=8.1X103N/mm2

[fv]=1.7X0.9=1.53N/mm2

(1)强度计算(横向方木间距200mm)

三跨连续梁梁在均布荷载作用下的受力简图及弯矩图如下:

q

.1

円L二

r1

kL

Mmax=ql2/10=0.2>

70.13X).62/10=0.5kN•m

omax=Mmax/W=0.5X1000/(10Xj02/6)=3N/mm2V[fm]=15.3

N/mm2

木材在其顺纹方向抗剪强度较差,在横力弯曲时可能因中性层上剪应力过大而使方木沿中性层发生剪切破坏,需按顺纹方向的许用剪力对方木进行强度校核。

均布荷载作用下简支梁受力图及剪力图如下:

剪力图

方木顺纹方向所受最大剪力为:

Vmax=ql/2=o.2X58.188X).6/2=4.09kN

方木顺纹方向承受的最大剪应力为:

Tax=1.5Vmax/A=1.5>

4.09x1000/(100x100)=0.61N/mm2v[fv]=1.53N/mm2

(2)挠度计算(按三跨连续梁计算)

u=0.677qL4/(100EI)

=0.677X5.2X58.188X5004心00X3.1X03X00X003/12)

=0.18mm<

L/400=1.5mm

4、主楞双钢管验算

每个可调托座上放置横向普通①48X3.5mr双钢管,由于主楞上

的纵向方木间距为20cm,所以次楞传递给横向主楞的荷载,近似按均布荷载计算,纵向双钢管下立杆间距为60cm,钢管计算壁厚按现

场实测最不利取值3.0mm。

钢管的截面模量W为4.49X03mm,抗压强度设计值为205N/mm2。

受力模式采用均布荷载作用下三跨连续梁计算

q=68.188X.6=40.91kN/m

Mmax=ql2/10=40.910.62/10=1.473kN•m

omax=Mmax/W=1.473106/(2>

4.49103)=164N/mm2v[(T]=205N/mm2

2.挠度计算(按三跨连续梁计算)

u=0.677q〃100EI

=0.67768.188068004/(2采00>

2.05XO5X12.19>

K04)=0.7mm<

L/400=1.5mm

二、水泥土搅拌桩承载力设计

2.1建筑条件

箱梁部分支架采用门洞式支架,门洞式钢管立柱采用直径①

630mm,壁厚12mm的无缝钢管。

立柱下为2.0m>

1.5m(宽>

高)的C30钢筋混凝土条形基础。

条基下为软土层,采用深层水泥土搅拌桩处理,要求处理后的复合地基承载力特征值fak=160kPa。

2.2地层分布

根据野外钻探,结合原位测试及室内试验成果,拟建神山湖大桥地段分布的地层主要有:

人工填积(°

)层、第四系湖塘相沉积(lQ4J)层、第四系全新统冲积(Q4'

)层、第四系上更新统冲积(Ig)层、

CalplIl^eldl

第四系中更新统冲、洪积()层、第四系残、坡积(空」)层及下伏志留系坟头组(b"

)地层组成。

现将拟建桥梁沿线内分布的地层从上至下简述如下:

1、人工填积层()层

素填土(地层代号:

①3):

黄褐色,主要由黏性土组成,夹少量

碎石,密实度不均匀,呈湿、稍密~中密状态。

该层土在神山湖南北

两岸道路及田埂处分布。

2、第四系全新统湖积(国)层

淤泥(地层代号③):

黑灰色,含有大量腐烂植物,有腥臭味,呈饱和、流塑状态。

该层土主要分布于神山湖,对应里程为

K1+790.0~K2+332.0。

3、第四系全新统冲积(Q:

粉质黏土(地层代号:

⑤):

灰褐~黄褐色,局部含少量有机质。

切面稍光滑,无摇震反应、干强度中等、韧性中等,呈饱和、可塑状态。

该层土分布于神山湖及其北岸部分地段,对应里程为

K1+760.0~K2+690.0。

4、第四系上更新统冲积(磧)层

⑩):

褐黄色~黄褐色,含铁锰质氧化物结核及灰白色高岭土团块,无摇振反应,切面光滑,干强度及韧性高,呈饱和、硬塑状态。

该层土分布于神山湖南北两岸,对应里程分别为

K1+790.0~K1+820.0、K2+240.0~K2+810.0。

oalPl

5、第四系中更新统冲积、洪积()层

黏土(地层代号:

(12)):

棕红~砖红色,含铁锰质氧化物结核及少量灰白色高岭土团块,切面光滑,干强度高、韧性高,呈饱和、硬塑状态。

该层土主要分布于神山湖北侧高地,对应里程为

K2+660.0~K2+810.0。

—eldl

6、第四系残积层()层

(13)):

褐黄色,含少量灰白色高岭土条纹,

夹有少量风化岩屑,岩屑粒径一般0.3~3.0cm,含量约20%左右,呈

饱和、硬塑状态。

该层土在桥梁沿线均有分布。

7、志留系坟头组(l&

f)岩层

强风化粉砂质泥岩(地层代号:

(15)1):

浅黄色,主要矿物成分为水云母、石英、粘土矿物及铁质,泥质结构,定向构造,岩芯呈土状;

该岩层在局部地段相变为泥质粉砂岩。

该层在桥梁沿线均有分布。

中风化粉砂质泥岩(地层代号:

(15)2):

褐灰色,主要矿物成分为水云母、石英、粘土矿物及铁质,泥质结构,定向构造,岩芯呈块状、短柱状,锤击声哑;

该岩层在局部地段相变为泥质粉砂岩。

该层在桥梁沿线均有分布。

微风化粉砂质泥岩(地层代号:

(15)3):

青灰色,主要矿物成分为水云母、石英、粘土矿物及铁质,泥质结构,定向构造,岩芯呈柱状、长柱状,锤击声较催;

该层在桥梁沿线均有分布。

各层层厚、层顶埋深、层顶标高等详见下表2.1

时代

成因

地层

编号

岩土

名称

状态

层厚

层顶埋深

层顶标高

max

min

g

Qml

①3

素填土

稍密〜中密

3.70

0.40

1.60

0.00

16.45~27.67

q4

淤泥

流塑

2.50

1.13

0.00~3.60

17.54~20.67

Q:

粉质黏土

可塑

4.50

1.00

3.23

0.00~2.40

17.41~20.61

_al

Q3

硬塑

8.90

1.20

4.51

0.40~8.30

11.81~27.67

Q

I;

1p

(12)

黏土

5.40

2.10

4.03

3.10~6.40

16.66〜23.17

Qeldl

(13)

3.40

0.80

1.62

5.50~11.60

8.31~17.77

5!

粉砂质泥岩

强风化

3.20

1.91

7.80~13.10

6.54~15.97

(15)2

中风化

7.00

1.10

2.74

9.00~15.40

4.14~14.17

(15)3

微风化

12.20~19.40

1.74~8.87

2.3地基岩土物理力学性能

综合分析本次勘察成果,现将桥梁沿线范围内各岩土的工程性能分析如下:

1、人工填积层(或)层

其标准贯入试验标准值叵=93,该填土呈稍密~中密状态,根据《公路工程地质勘察规范》(JTGC20-2011)附录J,该层为I级松土。

属人工土类,力学性质不稳定。

2、第四系全新统湖积(lQ4)层

淤泥(地层代号:

③):

其含水量平均值同=88.5%,天然重度平均值[S=15.3kN/m3,天然孔隙比平均值1=2.582,塑性指数平均值"

=32.5,液性指数平均值bl=1.35,压缩系数平均值d=2.64MP【:

属高压缩性土,为I级松土。

该层属软土,埋藏浅,厚薄,分布较广泛,工程性质差。

3、第四系全新统冲积(lQ;

)层

其同=26.4%,国=19.2kN/m3,,l=0.722,

[0=13.6,同=0.52,(lZ2=0.28Mp3,该层力学性能中等。

属中压缩

性土,为I级松土

其皿=22.3%,刖=19.9kN/m3,B=o.667,

[3=14.0,0=0.17,=0.1应1,力学性能较好。

属中等偏低压

缩性土,为H级普通土

5、第四系中更新统冲洪积(国"

I)层

其岡=22.2%,E=20.1kN/m3,(1=0.662,13=18.8,冋二0.04,K^O.lJMP」,力学性能较好。

属低压缩性土,为H级普通土。

^eldll

6、第四系残积层(□)层

粉质黏土(地层代号(13)):

其园=21.4%,忖=20.3kN/m3,园=0.609,11.8,0=0.14,HZ2=0.16(MpZI,该层力学性能较好。

属中等偏低压缩性土,为H级普通土。

7、志留系坟头组(lS2f)岩层

强风化粉砂质泥岩(地层代号(15)1):

属极软岩,岩体破碎,岩体基本质量等级为V级,为W级软石。

该层承载力中等、低压缩性。

由于埋藏不深,厚度不大,不宜作为桩端持力层。

中风化粉砂质泥岩(地层代号(15)2):

属软岩,岩体破碎,岩体基本质量等级为V级,为W级软石。

该层承载力较高、不可压缩。

由于该岩层埋藏不深,厚度不大,不建议作为大桥桩端持力层。

微风化粉砂质泥岩(地层代

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2