结构化学基础习题及答案(结构化学总复习)Word格式.doc

上传人:wj 文档编号:3542711 上传时间:2023-05-01 格式:DOC 页数:186 大小:4.48MB
下载 相关 举报
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第1页
第1页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第2页
第2页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第3页
第3页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第4页
第4页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第5页
第5页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第6页
第6页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第7页
第7页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第8页
第8页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第9页
第9页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第10页
第10页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第11页
第11页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第12页
第12页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第13页
第13页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第14页
第14页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第15页
第15页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第16页
第16页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第17页
第17页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第18页
第18页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第19页
第19页 / 共186页
结构化学基础习题及答案(结构化学总复习)Word格式.doc_第20页
第20页 / 共186页
亲,该文档总共186页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

结构化学基础习题及答案(结构化学总复习)Word格式.doc

《结构化学基础习题及答案(结构化学总复习)Word格式.doc》由会员分享,可在线阅读,更多相关《结构化学基础习题及答案(结构化学总复习)Word格式.doc(186页珍藏版)》请在冰点文库上搜索。

结构化学基础习题及答案(结构化学总复习)Word格式.doc

【1.6】对一个运动速度(光速)的自由粒子,有人进行了如下推导:

结果得出的结论。

上述推导错在何处?

请说明理由。

微观粒子具有波性和粒性,两者的对立统一和相互制约可由下列关系式表达:

式中,等号左边的物理量体现了粒性,等号右边的物理量体现了波性,而联系波性和粒性的纽带是Planck常数。

根据上述两式及早为人们所熟知的力学公式:

知①,②,④和⑤四步都是正确的。

微粒波的波长λ服从下式:

式中,u是微粒的传播速度,它不等于微粒的运动速度υ,但③中用了,显然是错的。

在④中,无疑是正确的,这里的E是微粒的总能量。

若计及E中的势能,则⑤也不正确。

【1.7】子弹(质量0.01kg,速度1000m·

s-1),尘埃(质量10-9kg,速度10m·

s-1)、作布郎运动的花粉(质量10-13kg,速度1m·

s-1)、原子中电子(速度1000m·

s-1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?

按测不准关系,诸粒子的坐标的不确定度分别为:

子弹:

尘埃:

花粉:

电子:

【1.8】电视机显象管中运动的电子,假定加速电压为1000,电子运动速度的不确定度为的10%,判断电子的波性对荧光屏上成像有无影响?

在给定加速电压下,由不确定度关系所决定的电子坐标的不确定度为:

这坐标不确定度对于电视机(即使目前世界上最小尺寸最小的袖珍电视机)荧光屏的大小来说,完全可以忽略。

人的眼睛分辨不出电子运动中的波性。

因此,电子的波性对电视机荧光屏上成像无影响。

【1.9】用不确定度关系说明光学光栅(周期约)观察不到电子衍射(用电压加速电子)。

解法一:

根据不确定度关系,电子位置的不确定度为:

这不确定度约为光学光栅周期的10-5倍,即在此加速电压条件下电子波的波长约为光学光栅周期的10-5倍,用光学光栅观察不到电子衍射。

解法二:

若电子位置的不确定度为10-6m,则由不确定关系决定的动量不确定度为:

在104V的加速电压下,电子的动量为:

由Δpx和px估算出现第一衍射极小值的偏离角为:

这说明电子通过光栅狭缝后沿直线前进,落到同一个点上。

因此,用光学光栅观察不到电子衍射。

【1.10】请指出下列算符中的线性算符和线性自轭算符:

由线性算符的定义:

为线性算符;

而为线性自轭算符.

【1.11】是算符的本征函数,求其本征值。

应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得:

因此,本征值为。

【1.12】下列函数中,哪几个是算符的本征函数?

若是,求出本征值。

,是的本征函数,本征值为1。

是的本征函数,本征值为1。

【1.13】和对算符是否为本征函数?

所以,是算符的本征函数,本征值为。

所以不是算符的本征函数。

【1.14】证明在一维势箱中运动的粒子的各个波函数互相正交。

证:

在长度为的一维势箱中运动的粒子的波函数为:

=1,2,3,……

令n和n’表示不同的量子数,积分:

和皆为正整数,因而和皆为正整数,所以积分:

根据定义,和互相正交。

【1.15】已知在一维势箱中粒子的归一化波函数为

式中是势箱的长度,是粒子的坐标,求粒子的能量,以及坐标、动量的平均值。

(1)将能量算符直接作用于波函数,所得常数即为粒子的能量:

即:

(2)由于无本征值,只能求粒子坐标的平均值:

(3)由于无本征值。

按下式计算px的平均值:

【1.16】求一维势箱中粒子在和状态时,在箱中范围内出现的概率,并与图1.3.2(b)相比较,讨论所得结果是否合理。

(a)

由上述表达式计算和,并列表如下:

1/8

1/4

1/3

3/8

1/2

0.293

1.000

1.500

1.726

2.000

5/8

2/3

3/4

7/8

1

根据表中所列数据作图示于图1.16中。

图1.16

(b)粒子在状态时,出现在和间的概率为:

粒子在ψ2状态时,出现在0.49l和0.51l见的概率为:

(c)计算结果与图形符合。

【1.17】链型共轭分子在长波方向处出现第一个强吸收峰,试按一维势箱模型估算其长度。

该分子共有4对电子,形成离域键。

当分子处于基态时,8个电子占据能级最低的前4个分子轨道。

当分子受到激发时,电子由能级最高的被占轨道(n=4)跃迁到能级最低的空轨道(n=5),激发所需要的最低能量为ΔE=E5-E4,而与此能量对应的吸收峰即长波方向460nm处的第一个强吸收峰。

按一维势箱粒子模型,可得:

因此:

计算结果与按分子构型参数估算所得结果吻合。

【1.18】一个粒子处在的三维势箱中,试求能级最低的前5个能量值[以h2/(8ma2)为单位],计算每个能级的简并度。

质量为m的粒子在边长为a的立方箱中运动,其能级公式为:

E122=E212=E221=9

E113=E131=E311=11

E222=12

【1.19】若在下一离子中运动的电子可用一维势箱近似表示其运动特征:

估计这一势箱的长度,根据能级公式估算电子跃迁时所吸收的光的波长,并与实验值510.0比较。

该离子共有1个电子,当离子处于基态时,这些电子填充在能级最低的前5个型分子轨道上。

离子受到光的照射,电子将从低能级跃迁到高能级,跃迁所需要的最低能量即第5和第6两个分子轨道的的能级差。

此能级差对应于棘手光谱的最大波长。

应用一维势箱粒子的能级表达式即可求出该波长:

实验值为510.0nm,计算值与实验值的相对误差为-0.67%。

【1.20】已知封闭的圆环中粒子的能级为:

式中为量子数,是圆环的半径,若将此能级公式近似地用于苯分子中离域键,取R=140pm,试求其电子从基态跃迁到第一激发态所吸收的光的波长。

由量子数n可知,n=0为非简并态,|n|≥1都为二重简并态,6个电子填入n=0,1,等3个轨道,如图1.20所示:

图1.20苯分子能级和电子排布

实验表明,苯的紫外光谱中出现β,和共3个吸收带,它们的吸收位置分别为184.0nm,208.0nm和263.0nm,前两者为强吸收,后面一个是弱吸收。

由于最低反键轨道能级分裂为三种激发态,这3个吸收带皆源于电子在最高成键轨道和最低反键之间的跃迁。

计算结果和实验测定值符合较好。

【1.21】函数是否是一维势箱中粒子的一种可能状态?

若是,其能量有无确定值?

若有,其值为多少?

若无,求其平均值。

该函数是长度为的一维势箱中粒子的一种可能状态。

因为函数和都是一维势箱中粒子的可能状态(本征态),根据量子力学基本假设Ⅳ(态叠加原理),它们的线性组合也是该体系的一种可能状态。

因为

常数

所以,不是的本征函数,即其能量无确定值,可按下述步骤计算其平均值。

将归一化:

设=,即:

所代表的状态的能量平均值为:

也可先将和归一化,求出相应的能量,再利用式求出所代表的状态的能量平均值:

02原子的结构和性质

【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R及整数n1、n2的数值。

将各波长换算成波数:

由于这些谱线相邻,可令,……。

列出下列4式:

(1)÷

(2)得:

用尝试法得m=2(任意两式计算,结果皆同)。

将m=2带入上列4式中任意一式,得:

因而,氢原子可见光谱(Balmer线系)各谱线的波数可归纳为下式:

式中,。

【2.2】按Bohr模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。

根据Bohr提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

n=1,2,3,……

式中,和分别是电子的质量,绕核运动的半径,半径为时的线速度,电子的电荷和真空电容率。

同时,根据量子化条件,电子轨道运动的角动量为:

将两式联立,推得:

当原子处于基态即n=1时,电子绕核运动的半径为:

若用原子的折合质量代替电子的质量,则:

基态时电子绕核运动的线速度为:

【2.3】对于氢原子:

(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。

(b)上述两谱线产生的光子能否使:

(i)处于基态的另一氢原子电离?

(ii)金属铜中的铜原子电离(铜的功函数为)?

(c)若上述两谱线所产生的光子能使金属铜晶体的电子电离,请计算出从金属铜晶体表面发射出的光电子的德补罗意波的波长。

(a)氢原子的稳态能量由下式给出:

式中n是主量子数。

第一激发态(n=2)和基态(n=1)之间的能量差为:

原子从第一激发态跃迁到基态所发射出的谱线的波长为:

第六激发态(n=7)和基态(n=1)之间的能量差为:

所以原子从第六激发态跃迁到基态所发射出的谱线的波长为:

这两条谱线皆属Lyman系,处于紫外光区。

(b)使处于基态的氢原子电离所得要的最小能量为:

ΔE∞=E∞-E1=-E1=2.18×

10-18J

而ΔE1=1.64×

10-18J<

ΔE∞

ΔE6=2.14×

所以,两条谱线产生的光子均不能使处于基态的氢原子电离,但是

ΔE1>

ФCu=7.44×

10-19J

ΔE6>

所以,两条谱线产生的光子均能使铜晶体电离。

(c)根据德布罗意关系式和爱因斯坦光子学说,铜晶体发射出的光电子的波长为:

式中ΔE为照射到晶体上的光子的能量和ФCu之差。

应用上式,分别计算出两条原子光谱线照射到铜晶体上后铜晶体所发射出的光电子的波长:

【2.4】请通过计算说明,用氢原子从第六激发态跃迁到基态所产生的光子照射长度为的线型分子,该分子能否产生吸收光谱。

若能,计算谱线的最大波长;

若不能,请提出将不能变为能的思路。

氢原子从第六激发态(n=7)跃迁到基态(n=1)所产生的光子的能量为:

而分子产生吸收光谱所需要的最低能量为:

显然,但此两种能量不相等,根据量子化规则,不能产生吸收光效应。

若使它产生吸收光谱,可改换光源,例如用连续光谱代替H原子光谱。

此时可满足量子化条件,该共轭分子可产生吸收光谱,其吸收波长为:

【2.5】计算氢原子在和处的比值。

氢原子基态波函数为:

该函数在r=a0和r=2a0处的比值为:

而在在r=a0和r=2a0处的比值为:

e2≈7.38906

【2.6】计算氢原子的1s电子出现在的球形界面内的概率。

根据波函数、概率密度和电子的概率分布等概念的物理意义,氢原子的1s电子出现在r=100pm的球形界面内的概率为:

那么,氢原子的1s电子出现在r=100pm的球形界面之外的概率为1-0.728=0.272。

【2.7】计算氢原子的积分:

,作出图,求P(r)=0.1时的r值,说明在该r值以内电子出现的概率是90%。

根据此式列出P(r)-r数据表:

r/a0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P(r)

0.920

0.677

0.423

0.238

0.125

0.062

0.030

0.014

根据表中数据作出P(r)-r图示于图2.7中:

由图可见:

时,

时,

即在r=2.7a0的球面之外,电子出现的概率是10%,而在r=2.7a0的球面以内,电子出现的概率是90%,即:

图2.7P(r)-r图

【2.8】已知氢原子的归一化基态波函数为

(a)利用量子力学基本假设求该基态的能量和角动量;

(b)利用维里定理求该基态的平均势能和零点能。

(a)根据量子力学关于“本征函数、本征值和本征方程”的假设,当用Hamilton算符作用于ψ1s时,若所得结果等于一常数乘以此ψ1s,则该常数即氢原子的基态能量E1s。

氢原子的Hamiltton算符为:

由于ψ1s的角度部分是常数,因而与θ,ф无关:

将作用于ψ1s,有:

(r=a0)

所以

=…

=-2.18×

也可用进行计算,所得结果与上法结果相同。

注意:

此式中。

将角动量平方算符作用于氢原子的ψ1s,有:

=0ψ1s

M2=0

|M|=0

此结果是显而易见的:

不含r项,而ψ1s不含θ和ф,角动量平方当然为0,角动量也就为0。

通常,在计算原子轨道能等物理量时,不必一定按上述作法、只需将量子数等参数代人简单计算公式,如:

即可。

(b)对氢原子,,故:

此即氢原子的零点能。

【2.9】已知氢原子的,试回答下列问题:

(a)原子轨道能E=?

(b)轨道角动量|M|=?

轨道磁矩|μ|=?

(c)轨道角动量M和z轴的夹角是多少度?

(d)列出计算电子离核平均距离的公式(不算出具体的数值)。

(e)节面的个数、位置和形状怎么样?

(f)概率密度极大值的位置在何处?

(g)画出径向分布示意图。

(a)原子的轨道能:

(b)轨道角动量:

轨道磁矩:

(c)轨道角动量和z轴的夹角:

(d)电子离核的平均距离的表达式为:

(e)令,得:

r=0,r=∞,θ=900

节面或节点通常不包括r=0和r=∞,故的节面只有一个,即xy平面(当然,坐标原点也包含在xy平面内)。

亦可直接令函数的角度部分,求得θ=900。

(f)几率密度为:

由式可见,若r相同,则当θ=00或θ=1800时ρ最大(亦可令,θ=00或θ=1800),以表示,即:

将对r微分并使之为0,有:

解之得:

r=2a0(r=0和r=∞舍去)

又因:

所以,当θ=00或θ=1800,r=2a0时,有极大值。

此极大值为:

(g)

根据此式列出D-r数据表:

5.0

6.0

D/

0.015

0.090

0.169

0.195

0.175

0.134

7.0

8.0

9.0

10.0

11.0

12.0

0.091

0.057

0.034

0.019

1.02×

10-2

5.3×

10-3

按表中数据作出D-r图如下:

图2.9H原子的D-r图

由图可见,氢原子的径向分布图有n-l=1个极大(峰)和n-l-1=0个极小(节面),这符合一般径向分布图峰数和节面数的规律。

其极大值在r=4a0处。

这与最大几率密度对应的r值不同,因为二者的物理意义不同。

另外,由于径向分布函数只与n和l有关而与m无关,2px、2py和2pz的径向分布图相同。

【2.10】对氢原子,,所有波函数都已归一化。

请对所描述的状态计算:

(a)能量平均值及能量出现的概率;

(b)角动量平均值及角动量出现的概率;

(c)角动量在z轴上的分量的平均值及角动量z轴分量出现的概率。

根据量子力学基本假设Ⅳ-态叠加原理,对氢原子所描述的状态:

(a)能量平均值

能量出现的概率为

(b)角动量平均值为

角动量出现的概率为

(c)角动量在z轴上的分量的平均值为

角动量z轴分量h/π出现的概率为0。

【2.11】作氢原子图及图,证明极大值在处,说明两图形不同的原因。

H原子的

分析和随r的变化规律,估计r的变化范围及特殊值,选取合适的r值,计算出和列于下表:

0*

0.10

0.20

0.35

0.50

0.70

0.90

1.10

1.30

1.00

0.82

0.67

0.49

0.37

0.25

0.17

0.11

0.07

0.03

0.24

0.48

0.54

1.60

2.00

2..30

2.50

3.00

3.50

4.00

4.50

5.00

0.04

0.02

0.01

0.007

0.003

0.001

<

-

0.42

0.29

0.21

0.09

0.005

*从物理图象上来说,r只能接近于0。

根据表中数据作图及图如下:

图2.11图和D1s-r图

【2.12】试在直角坐标系中画出氢原子的5种3d轨道的轮廓图,比较这些轨道在空间的分布,正、负号,节面及对称性。

5种3d轨道的轮廓图如图2.12所示。

它们定性地反映了H原子3d轨道的下述性质:

(1)轨道在空间的分布:

的两个极大值分别在z轴的正、负方向上距核等距离处,另一类极大值则在平面,以核为心的圆周上。

其余4个3d轨道彼此形状相同,但空间取向不同。

其中分别沿轴和轴的正、负方向伸展,,和的极大值(各有4个)夹在相应的两坐标之间。

例如,的4个极大值(若以极坐标表示)分别在,;

;

和,方向上。

图2.123d轨道轮廓图

(2)轨道的节面:

有两个锥形节面(),其顶点在原子核上,锥角约。

另外4个3d轨道各有两个平面型节面,将4个瓣分开。

但节面的空间取向不同:

的节面分别为平面()和平面();

的节面分别是平面()和平面();

而的节面则分别为和(任意)两个平面。

节面的数目服从规则。

根据节面的数目可以大致了解轨道能级的高低,根据节面的形状可以了解轨道在空间的分布情况。

(3)轨道的对称性:

5个3d轨道都是中心对称的,且轨道沿轴旋转对称。

(4)轨道的正、负号:

已在图中标明。

原子轨道轮廓图虽然只有定性意义,但它图像明确,简单实用,在研究轨道叠加形成化学键时具有重要意义。

【2.13】写出He原子的Schrö

dinger方程,说明用中心力场模型解此方程时要作那些假设,计算其激发态(2s)1(2p)1的轨道角动量和轨道磁矩.

He原子的Schrodinger方程为:

式中和分别是电子1和电子2到核的距离,是电子1和电子2之间的距离,若以原子单位表示,则He原子的Schrodinger方程为:

用中心力场解此方程时作了如下假设:

(1)将电子2对电子1(1和2互换亦然)的排斥作用归结为电子2的平均电荷分布所产生的一个以原子核为中心的球对称平均势场的作用(不探究排斥作用的瞬时效果,只着眼于排斥作用的平均效果)。

该势场叠加在核的库仑场上,形成了一个合成的平均势场。

电子1在此平均势场中独立运动,其势能只是自身坐标的函数,而与两电子间距离无关。

这样,上述Schrodinger方程能量算符中的第三项就消失了。

它在形式上变得与单电子原子的Schrodinger方程相似。

(2)既然电子2所产生的平均势场是以原子核为中心的球形场,那么它对电子1的排斥作用的效果可视为对核电荷的屏蔽,即抵消了个核电荷,使电子1感受到的有效电荷降低为。

这样,Schrod

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2