吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc

上传人:wj 文档编号:3658527 上传时间:2023-05-02 格式:DOC 页数:25 大小:862.50KB
下载 相关 举报
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第1页
第1页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第2页
第2页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第3页
第3页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第4页
第4页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第5页
第5页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第6页
第6页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第7页
第7页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第8页
第8页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第9页
第9页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第10页
第10页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第11页
第11页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第12页
第12页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第13页
第13页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第14页
第14页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第15页
第15页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第16页
第16页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第17页
第17页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第18页
第18页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第19页
第19页 / 共25页
吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc

《吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc》由会员分享,可在线阅读,更多相关《吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc(25页珍藏版)》请在冰点文库上搜索。

吉林大学材料力学课程设计7.6-d--D轴设计-24Word文档下载推荐.doc

传动轴的材料为优质碳素结构钢(牌号45),许用应力[σ]=80MPa,经高频淬火处理,其σb=650MPa,σ-1=300MPa,τ-1=155MPa,磨削轴的表面,键槽均为端铣加工,阶梯轴过渡圆弧r均为2,疲劳安全系数n=2,要求:

1)绘出传动轴的受力简图;

2)作扭矩图及弯矩图;

3)根据强度条件设计等直轴的直径;

4)计算齿轮处轴的挠度;

(按直径Φ1的等直杆计算)

5)对阶梯传动轴进行疲劳强度计算;

(若不满足,采取改进措施使其满足疲劳强度);

6)对所取数据的理论根据作必要的说明。

说明:

a)坐标的选取均按下图6—1所示;

b)齿轮上的力F与节圆相切;

c)数据表中为直径D的皮带轮传递的功率,为直径为D1的皮带轮传递的功率。

6—2传动轴的零件图

Φ1为静强度条件所确定的轴径,尺寸最后一位数准确到mm,并取偶数。

图号6-4

本次课程设计采用第24组数据。

P=10.3kW,P1=11.0kW,n=800r/min,D=600mm,D1=280mm,D2=180mm,G2=700N,G1=800N,a=500mm,=35°

4.材料力学课程设计的具体设计方案

(一)绘出传动轴的受力简图

分析传动轴的零件图(下图)和受力图(右图),为直径D的皮带轮传递的功率,所以直径D的皮带轮传递的力矩M=9549=122.943Nm,为直径为D1的皮带轮传递的功率,所以直径D2的皮带轮传递的力矩M1=9549=131.299Nm。

和平与发展是当今世界发展的主题,中国作为屹立在世界东方的大国,要担负起重要的责任。

从“亚太自由贸易区”到“亚投行”、“一带一路”,再到G20峰会,都体现出中国一个负责任的大国形象。

25

在传动轴旋转方向上由力矩守衡可得平衡方程

,即

故可解得F==-92.884N

=937.850N

=409.810N

传动轴的受力图:

传动轴的零件图:

现绘出传动轴的受力简图(如下图所示):

(二)作扭矩图及弯矩图

由传动轴的受力简图可求支反力得

=1236.577N

=2712.919N

=940.941N

=385.9N

并作出传动轴各截面的内力图:

沿y轴方向的剪力图:

Fy1=1236.577N

Fy2=2712.919N

Fy2-G2=2012.919NNN

Fy1-F*cosα=1312.630N

沿z轴方向的剪力图:

Fz2=940.941N

Fz1=203.283N

Fz1-F*sinα=256.536N

扭矩图:

F*D2/2=-8.356Nm

F2*D/2=122.943Nm

沿y轴方向的弯矩图:

Fy2*a=1356.460Nm

Fy1*a=618.289Nm

3a*(Fy1-F*cosα)+Fy1*a=2587.234Nm

沿z轴方向的弯矩图:

Fz2*a=470.471Nm

Fz1*a=101.642Nm

(三)根据强度条件设计等直轴的直径

I.由于传动轴的材料为优质碳素结构钢(牌号45),因此需要选用第三强度理论进行强度计算。

根据第三强度理论=

其中

由扭矩图与弯矩图可确定危险截面在D截面右侧与E截面左侧。

在D截面右侧,,,则有在E截面左侧,,,则有

,所以等直轴只需要满足D截面右侧即可。

因此

解得,取。

由得

,取;

II.再校核是否满足静强度条件。

此时需对U截面左侧进行校核。

其中;

在U截面左侧,,,则有

解得,所以满足静强度条件。

III.然后校核是否满足静强度条件。

此时需对Q截面左侧,V截面右侧和E截面左侧进行校核。

很明显,其中。

在V截面左侧,,,则有

在E截面左侧,,,则有

,因此

解得,所以不满足静强度条件。

取,由得

,取。

综上所述,,,,。

(四)计算齿轮处轴的挠度(均按直径Φ1的等直杆计算)

图中直径为D2的轮为齿轮。

I.可以在该轮处(图中B点位置)沿y轴方向加一单位力F=1,并作出单位力作用下的弯矩图图。

图:

a=0.5m

其中E=200GPa(数据来源:

《材料力学》(机械工业出版社)表2-2),

此时可以利用图形互乘法求齿轮处该轴沿y轴方向的挠度

II.再在该轮处沿z轴方向加一单位力F=1,并作出单位力作用下的弯矩图图。

470.471Nm

101.642Nm

此时可以利用图形互乘法求齿轮处该轴沿z轴方向的挠度

III.

(五)对阶梯传动轴进行疲劳强度计算(若不满足,采取改进措施使其满足疲劳强度)

I.首先对传动轴键槽进行疲劳强度计算

因为该轴键槽为端铣加工,σb=650MPa,所以根据《材料力学》(机械工业出版社)P355页图13-10a可查得=1.8,根据《材料力学》(机械工业出版社)P355页图13-10b可查得=1.48。

因为该轴经高频淬火处理,σb=650MPa,=1.8,所以根据《材料力学》(机械工业出版社)P370页表13-4可查得=2.4。

由于此传动轴工作在弯扭组合交变应力状态下,因此在进行疲劳强度计算时疲劳强度条件可写成。

,,,。

,故弯矩循环系数r=-1,循环特征为对称循环;

,故扭矩循环系数r=0,循环特征为脉动循环。

所以,。

其中,,。

参照《材料力学》(机械工业出版社)P373页表13-5可选取。

在D截面右侧处:

,传动轴的材料为优质碳素结构钢(牌号45),根据《材料力学》(机械工业出版社)P369页表13-2可查得,。

,,

,安全。

在B截面右侧和E截面左侧处,,传动轴的材料为优质碳素结构钢(牌号45),根据《材料力学》(机械工业出版社)P369页表13-2可查得,。

在B截面右侧处:

在E截面左侧处:

II.再对传动轴阶梯轴进行疲劳强度计算

由于σb=650MPa,,,,,

,阶梯轴过渡圆弧r均为2mm,根据《材料力学》(机械工业出版社)P368页图13-9a,图13-9c,图13-9d,图13-9e可查得:

在P截面处,,所以=1.73,=1.40;

在Q截面处,,所以=1.76,=1.45;

在U截面处,,所以=1.80,=1.48;

在V截面处,,所以=2.25,=1.70;

在W截面处,,所以=1.73,=1.40;

在P截面处:

在Q截面处:

在U截面处:

在V截面处:

在W截面处:

现将各校核截面参数整理后列表如下:

初始应力

集中系数

尺寸系数

表面质量

系数

敏感

直径

(mm)

D

1.80

1.48

0.75

0.73

2.4

0.1

78

B

0.78

0.74

64

E

P

1.73

1.40

0.81

0.76

60

Q

1.76

1.45

U

70

V

2.25

1.70

W

各校核截面计算结果如下:

校核点

(MPa)

56.032

1.319

5.354

248.771

5.353

24.347

0.162

7.340

2148.645

12.813

55.787

2.239

5.593

155.281

5.703

14.774

22.818

+

43.614

7.316

1852.313

7.598

62.791

0.124

4.969

5184.332

78.568

2.389

3.177

122.740

3.176

33.852

9.958

综上所述,阶梯传动轴各个截面符合疲劳强度条件。

由于阶梯传动轴各个截面均符合疲劳强度条件,故本题不需要采取改进措施来改善疲劳强度。

附录:

本题所编写的C程序

该程序的源程序如下所示。

只要输入该题的任何一组数据,便可得到所求的答案。

本次课程设计所得数据均来自该程序。

另外该程序中已包含当传动轴不满足疲劳强度条件时通过增加传动轴直径来确保轴能够满足疲劳强度校核的语句,并能输出满足疲劳强度校核的最小直径。

#include<

math.h>

#definePi3.

floatMmax(floatMy,floatMz,floatMx)

{

return(sqrt(pow(My,2)+pow(Mz,2)+pow(Mx,2)));

}

floatmax2(floata,floatb)

return(a>

b?

a:

b);

floatmax3(floata,floatb,floatc)

return(max2(max2(a,b),c));

floatPa_max(floata,floatb,floatc)

return(32*sqrt(pow(a,2)+pow(b,2))/Pi/pow(c,3));

floatt_max(floata,floatb)

return(16*a/Pi/pow(b,3));

voidE(floatd,float*Eyz,float*Ex)

if(d>

0.020&

&

d<

=0.030){Eyz=0.91;

Ex=0.89;

elseif(d>

0.030&

=0.040){Eyz=0.88;

Ex=0.81;

0.040&

=0.050){Eyz=0.84;

Ex=0.78;

0.050&

=0.060){Eyz=0.81;

Ex=0.76;

0.060&

=0.070){Eyz=0.78;

Ex=0.74;

0.070&

=0.080){Eyz=0.75;

Ex=0.73;

0.080&

=0.100){Eyz=0.73;

Ex=0.72;

0.100&

=0.120){Eyz=0.70;

Ex=0.70;

0.120&

=0.150){Eyz=0.68;

Ex=0.68;

0.150&

=0.500){Eyz=0.60;

Ex=0.60;

voidn(floatEyz,floatEx,floatKyz,floatKx,floatbeta,floatMy,floatMz,floatMx,floatd,float*nyz,float*nx,float*nxyz)

floatta,tm;

nyz=300*pow(10,6)*EyzD*beta/Kyz/Pa_max(My,Mz,d);

if(Mx==0){nx=0;

nxyz=nyz;

else{taD=tmD=t_max(Mx,d1);

nx=155*pow(10,6)/(Kx*ta/Ex/beta+0.10*tm);

nxyz=nyz*nx/sqrt(pow(nyz,2)+pow(nx,2));

main()

floatd1,d2,d3,d4;

floatM,M1,F,F1,F2;

floatFy1,Fz1,Fy2,Fz2;

floatP,P1,n,D,D1,D2,G2,G1,a,Alpha;

floatMxA,MxB,MxC,MxD,MxE,MxF,MxP,MxQ,MxU,MxV,MxW;

floatMyA,MyB,MyC,MyD,MyE,MyF,MyP,MyQ,MyU,MyV,MyW;

floatMzA,MzB,MzC,MzD,MzE,MzF,MzP,MzQ,MzU,MzV,MzW;

floatPa=80*pow(10,6),E=200*pow(10,9);

floatMmaxA,MmaxB,MmaxC,MmaxD,MmaxE,MmaxF,mmaxP,MmaxQ,MmaxU,MmaxV,MmaxW;

floatIy,Iz,fy,fz,f,MM;

floatKyzD,KxD,KyzB,KxB,KyzE,KxE,KyzP,KxP,KyzQ,KxQ,KyzU,KxU,KyzV,KxV,KyzW,KxW;

floatEyzD,ExD,EyzB,ExB,EyzE,ExE,EyzP,ExP,EyzQ,ExQ,EyzU,ExU,EyzV,ExV,EyzW,ExW;

floatbeta;

floatnyzD,nxD,nxyzD,nyzB,nxB,nxyzB,nyzE,nxE,nxyzE;

floatnyzP,nxP,nxyzP,nyzQ,nxQ,nxyzQ;

floatnyzU,nxU,nxyzU,nyzV,nxV,nxyzV,nyzW,nxW,nxyzW;

printf("

inputP:

________kW\n"

);

scanf("

%f"

&

P);

inputP1:

P1);

inputn:

________r/min\n"

n);

inputD:

________mm\n"

D);

inputD1:

D1);

inputD2:

D2);

inputG2:

________N\n"

G2);

inputG1:

G1);

inputa:

a);

inputAlpha:

________degrees\n"

Alpha);

Alpha*=Pi/180;

D/=1000;

D1/=1000;

D2/=1000;

a/=1000;

M=9549*P/n;

M1=9549*P1/n;

F=2*(M-M1)/D2;

F1=2*M1/D1;

F2=2*M/D;

M=%0.3fNm,M1=%0.3fNm,F=%0.3fN,F1=%0.3fN,F2=%0.3f\nN"

M,M1,F,F1,F2);

Fy1=(4*F*cos(Alpha)+2*G1+6*F1+G2)/5;

Fz1=(4*F*sin(Alpha)+3*F2)/5;

Fy2=(F*cos(Alpha)+3*G1+9*F1+4*G2)/5;

Fz2=(4*F*sin(Alpha)+12*F2)/5;

Fy1=%0.3fN,Fz1=%0.3fN,Fy2=%0.3fN,Fz2=%0.3fN\n"

Fy1,Fz1,Fy2,Fz2);

/*Drawpicture*/

MxC=F*D2/2;

MxE=F2*D/2;

MyB=Fy1*a;

MyD=(Fy1-F*cos(Alpha))*3*a+Fy1*

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2