二次函数与四边形的动点问题含答案11Word文件下载.doc

上传人:wj 文档编号:3783673 上传时间:2023-05-02 格式:DOC 页数:19 大小:1.71MB
下载 相关 举报
二次函数与四边形的动点问题含答案11Word文件下载.doc_第1页
第1页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第2页
第2页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第3页
第3页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第4页
第4页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第5页
第5页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第6页
第6页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第7页
第7页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第8页
第8页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第9页
第9页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第10页
第10页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第11页
第11页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第12页
第12页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第13页
第13页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第14页
第14页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第15页
第15页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第16页
第16页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第17页
第17页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第18页
第18页 / 共19页
二次函数与四边形的动点问题含答案11Word文件下载.doc_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

二次函数与四边形的动点问题含答案11Word文件下载.doc

《二次函数与四边形的动点问题含答案11Word文件下载.doc》由会员分享,可在线阅读,更多相关《二次函数与四边形的动点问题含答案11Word文件下载.doc(19页珍藏版)》请在冰点文库上搜索。

二次函数与四边形的动点问题含答案11Word文件下载.doc

若不能,请说明理由.

二.二次函数与四边形的面积

例1.(资阳市)25.如图10,已知抛物线P:

y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:

x

-3

-2

y

-

-4

图10

(1)求A、B、C三点的坐标;

(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;

(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·

DF,若点M不在抛物线P上,求k的取值范围.

 

练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).

(1)画出直角梯形OMNH绕点O旋转180°

的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);

(2)求出过A,B,C三点的抛物线的表达式;

(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;

面积S是否存在最小值?

若存在,请求出这个最小值;

若不存在,请说明理由;

(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;

  

练习3.(吉林课改卷)如图,正方形的边长为,在对称中心处有一钉子.动点,同时从点出发,点沿方向以每秒的速度运动,到点停止,点沿方向以每秒的速度运动,到点停止.,两点用一条可伸缩的细橡皮筋联结,设秒后橡皮筋扫过的面积为.

B

C

P

D

Q

(1)当时,求与之间的函数关系式;

(2)当橡皮筋刚好触及钉子时,求值;

(3)当时,求与之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时的变化范围;

(4)当时,请在给出的直角坐标系中画出与之间的函数图象.

练习4.(四川资阳卷)如图,已知抛物线l1:

y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.

(1)求l2的解析式;

(2)求证:

点D一定在l2上;

(3)□ABCD能否为矩形?

如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);

如果不能为矩形,请说明理由.注:

计算结果不取近似值

.

三.二次函数与四边形的动态探究

例1.(荆门市)28.如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;

再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.

(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;

(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;

(3)在

(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?

若不存在,说明理由;

若存在,求出点Q的坐标.

图1

图2

例2.(2010年沈阳市第26题)、已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<

OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.

(1)求A、B、C三点的坐标;

(2)求此抛物线的表达式;

(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;

例3..(湖南省郴州)27.如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线A平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,表示矩形NFQC的面积.

(1)S与相等吗?

请说明理由.

(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?

(3)如图11,连结BE,当AE为何值时,是等腰三角形.

图11

练习1.(07年河池市)如图12,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点从出发以每秒2个单位长度的速度向运动;

点从同时出发,以每秒1个单位长度的速度向运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点作垂直轴于点,连结AC交NP于Q,连结MQ.

图12

(1)点(填M或N)能到达终点;

(2)求△AQM的面积S与运动时间t的函数关系式,并写出自

变量t的取值范围,当t为何值时,S的值最大;

(3)是否存在点M,使得△AQM为直角三角形?

若存在,求出点M的坐标,

练习2..(江西省)25.实验与探究

(1)在图1,2,3中,给出平行四边形的顶点的坐标(如图所示),写出图1,2,3中的顶点的坐标,它们分别是,,;

图3

(2)在图4中,给出平行四边形的顶点的坐标(如图所示),求出顶点的坐标(点坐标用含的代数式表示);

图4

归纳与发现

(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:

无论平行四边形处于直角坐标系中哪个位置,当其顶点坐标为(如图4)时,则四个顶点的横坐标之间的等量关系为;

纵坐标之间的等量关系为(不必证明);

运用与推广

(4)在同一直角坐标系中有抛物线和三个点,(其中).问当为何值时,该抛物线上存在点,使得以为顶点的四边形是平行四边形?

并求出所有符合条件的点坐标.

答案:

例1.解:

(1)令y=0,解得或∴A(-1,0)B(3,0);

将C点的横坐标x=2代入得y=-3,∴C(2,-3)∴直线AC的函数解析式是y=-x-1

(2)设P点的横坐标为x(-1≤x≤2)则P、E的坐标分别为:

P(x,-x-1),

E(∵P点在E点的上方,PE=

∴当时,PE的最大值=

(3)存在4个这样的点F,分别是

练习1.解:

(1)由抛物线的对称轴是,可设解析式为.把A、B两点坐标代入上式,得

解之,得

故抛物线解析式为,顶点为

(2)∵点在抛物线上,位于第四象限,且坐标适合

∴y<

0,即-y>

0,-y表示点E到OA的距离.∵OA是的对角线,

∴.

因为抛物线与轴的两个交点是(1,0)的(6,0),所以,自变量的

取值范围是1<<6.

①根据题意,当S=24时,即.

化简,得解之,得

故所求的点E有两个,分别为E1(3,-4),E2(4,-4).

点E1(3,-4)满足OE=AE,所以是菱形;

点E2(4,-4)不满足OE=AE,所以不是菱形.

②当OA⊥EF,且OA=EF时,是正方形,此时点E的

坐标只能是(3,-3).

而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,

使为正方形.

练习2.解:

(1)由题意知点的坐标为.设的函数关系式为.

又点在抛物线上,,解得.

抛物线的函数关系式为(或).

(2)与始终关于轴对称,与轴平行.

设点的横坐标为,则其纵坐标为,,,即.当时,解得.当时,解得.当点运动到或或或时,

,以点为顶点的四边形是平行四边形.

(3)满足条件的点不存在.理由如下:

若存在满足条件的点在上,则

,(或),

过点作于点,可得.

,,.

点的坐标为.

但是,当时,.

不存在这样的点构成满足条件的直角三角形.

练习3.[解]

(1)点,点,点关于原点的对称点分别为,,.设抛物线的解析式是

,则解得

所以所求抛物线的解析式是.

(2)由

(1)可计算得点.

过点作,垂足为.

当运动到时刻时,,.

根据中心对称的性质,所以四边形是平行四边形.

所以.所以,四边形的面积.因为运动至点与点重合为止,据题意可知.

所以,所求关系式是,的取值范围是.

(3),().

所以时,有最大值.

提示:

也可用顶点坐标公式来求.

(4)在运动过程中四边形能形成矩形.

(2)知四边形是平行四边形,对角线是,所以当时四边形是矩形.

所以.所以.

所以.解之得(舍).

所以在运动过程中四边形可以形成矩形,此时.

[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

例1.解:

(1)解法一:

设,

任取x,y的三组值代入,求出解析式,

令y=0,求出;

令x=0,得y=-4,

∴A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,-4).

解法二:

由抛物线P过点(1,-),(-3,)可知,

抛物线P的对称轴方程为x=-1,

又∵抛物线P过(2,0)、(-2,-4),则由抛物线的对称性可知,

点A、B、C的坐标分别为A(2,0),B(-4,0),C(0,-4).

(2)由题意,,而AO=2,OC=4,AD=2-m,故DG=4-2m,

又,EF=DG,得BE=4-2m,∴DE=3m,

∴=DG·

DE=(4-2m)3m=12m-6m2(0<m<2).

注:

也可通过解Rt△BOC及Rt△AOC,或依据△BOC是等腰直角三角形建立关系求解.

(3)∵SDEFG=12m-6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.

当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),

设直线DF的解析式为y=kx+b,易知,k=,b=-,∴,

又可求得抛物线P的解析式为:

令=,可求出.设射线DF与抛物线P相交于点N,

则N的横坐标为,过N作x轴的垂线交x轴于H,有

==,

点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是

k≠且k>0.

说明:

若以上两条件错漏一个,本步不得分.

若选择另一问题:

(2)∵,而AD=1,AO=2,OC=4,则DG=2,

又∵,而AB=6,CP=2,OC=4,则FG=3,

FG=6.

利用中心对称性质,画出梯形OABC.·

·

1分

∵A,B,C三点与M,N,H分别关于点O中心对称,

∴A(0,4),B(6,4),C(8,0) 

·

3分

(写错一个点的坐标扣1分)

 

(2)设过A,B,C三点的抛物线关系式为,

∵抛物线过点A(0,4),

∴.则抛物线关系式为. 

4分

将B(6,4),C(8,0)两点坐标代入关系式,得

5AB,垂足为G,则sin∠FEG=sin∠CAB=分

解得·

6分

所求抛物线关系式为:

.·

7分

(3)∵OA=4,OC=8,∴AF=4-m,OE=8-m.·

8分

∴ 

OA(AB+OC)AF·

AGOE·

OFCE·

OA

 

(0<<4)·

10分

∵.∴当时,S的取最小值.

又∵0<m<4,∴不存在m值,使S的取得最小值.·

12分

  (4)当时,GB=GF,当时,BE=BG. 

14分

练习3.[解]

(1)当时,,,,

即.

(2)当时,橡皮筋刚好触及钉子,

,,,.

(3)当时,,

,,

作,为垂足.

当时,,,,

即.

(4)如图所示:

练习4.[解]

(1)设l2的解析式为y=ax2+bx+c(a≠0),

∵l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称,

∴l2过A(-2,0),C(2,0),顶点坐标是(0,4),

∴a=-1,b=0,c=4,即l2的解析式为y=-x2+4.

(还可利用顶点式、对称性关系等方法解答)

(2)设点B(m,n)为l1:

y=x2-4上任意一点,则n=m2-4(*).

∵四边形ABCD是平行四边形,点A、C关于原点O对称,

∴B、D关于原点O对称,

∴点D的坐标为D(-m,-n).

由(*)式可知,-n=-(m2-4)=-(-m)2+4,

即点D的坐标满足y=-x2+4,

∴点D在l2上.

(3)□ABCD能为矩形.

过点B作BH⊥x轴于H,由点B在l1:

y=x2-4上,可设点B的坐标为(x0,x02-4),

则OH=|x0|,BH=|x02-4|.

易知,当且仅当BO=AO=2时,□ABCD为矩形.

在Rt△OBH中,由勾股定理得,|x0|2+|x02-4|2=22,

(x02-4)(x02-3)=0,∴x0=±

2(舍去)、x0=±

.

所以,当点B坐标为B(,-1)或B′(-,-1)时,□ABCD为矩形,此时,点D的坐标分别是D(-,1)、D′(,1).

因此,符合条件的矩形有且只有2个,即矩形ABCD和矩形AB′CD′.

设直线AB与y轴交于E,显然,△AOE∽△AHB,

∴=,∴.

∴EO=4-2.

由该图形的对称性知矩形ABCD与矩形AB′CD′重合部分是菱形,其面积为

S=2SΔACE=2×

×

AC×

EO=2×

(4-2)=16-8.

(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠BPE=90°

.∴∠OPE+∠APB=90°

.又∠APB+∠ABP=90°

,∴∠OPE=∠PBA.

∴Rt△POE∽Rt△BPA.

∴.即.∴y=(0<x<4).

且当x=2时,y有最大值.

(2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).

设过此三点的抛物线为y=ax2+bx+c,则∴

y=.

(3)由

(2)知∠EPB=90°

,即点Q与点B重合时满足条件.

直线PB为y=x-1,与y轴交于点(0,-1).

将PB向上平移2个单位则过点E(0,1),

∴该直线为y=x+1.

由得∴Q(5,6).

故该抛物线上存在两点Q(4,3)、(5,6)满足条件.

 例2.解:

(1)解方程x2-10x+16=0得x1=2,x2=8 ……………………1分

∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC

∴点B的坐标为(2,0),点C的坐标为(0,8)

又∵抛物线y=ax2+bx+c的对称轴是直线x=-2

∴由抛物线的对称性可得点A的坐标为(-6,0) …………………4分

(2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上

∴c=8,将A(-6,0)、B(2,0)代入表达式,得

 解得

∴所求抛物线的表达式为y=x2x+8  ………………………7分

(3)依题意,AE=m,则BE=8-m,

∵OA=6,OC=8,∴AC=10

∵EF∥AC ∴△BEF∽△BAC

∴  即

∴EF=

∴= ∴FG=·

=8-m

∴S=S△BCE-S△BFE=(8-m)×

8-(8-m)(8-m)

=(8-m)(8-8+m)=(8-m)m=-m2+4m …………10分

自变量m的取值范围是0<m<8  …………………………11分

(4)存在.

理由:

∵S=-m2+4m=-(m-4)2+8  且-<0,

∴当m=4时,S有最大值,S最大值=8  ………………………12分

∵m=4,∴点E的坐标为(-2,0)

∴△BCE为等腰三角形.  …………………………14分

(以上答案仅供参考,如有其它做法,可参照给分)

例3解:

(1)相等

理由是:

因为四边形ABCD、EFGH是矩形,

所以

所以即:

(2)AB=3,BC=4,AC=5,设AE=x,则EC=5-x,

所以,即

配方得:

,所以当时,

S有最大值3

(3)当AE=AB=3或AE=BE=或AE=3.6时,是等腰三角形

练习1.解:

(1)点M 1分

(2)经过t秒时,,

则,∵==∴∴

∴∴

∵∴当时,S的值最大.

(3)存在.设经过t秒时,NB=t,OM=2t则,∴==

①若,则是等腰Rt△底边上的高

∴是底边的中线∴∴∴

∴点的坐标为(1,0)

②若,此时与重合∴∴∴

∴点的坐标为(2,0)

(1),.

(2)分别过点作轴的垂线,垂足分别为,

分别过作于,于点.

在平行四边形中,,又,

又,

,.

设.由,得.

由,得..

(3),.或,.

(4)若为平行四边形的对角线,由(3)可得.要使在抛物线上,

则有,即.

(舍去),.此时.

若为平行四边形的对角线,由(3)可得,同理可得,此时.

综上所述,当时,抛物线上存在点,使得以为顶点的四边形是平行四边形.

符合条件的点有,,.

练习3.解:

⑴由Rt△AOB≌Rt△CDA得

OD=2+1=3,CD=1

∴C点坐标为(-3,1),

∵抛物线经过点C,

∴1=(-3)2a+(-3)a-2,∴。

∴抛物线的解析式为.

⑵在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ是正方形。

以AB边在AB右侧作正方形ABPQ。

过P作PE⊥OB于E,QG⊥x轴于G,

可证△PBE≌△AQG≌△BAO,

∴PE=AG=BO=2,BE=QG=AO=1,

∴∴P点坐标为(2,1),Q点坐标为(1,-1)。

(1)抛物线。

当x=2时,y=1,当x=,1时,y=-1。

∴P、Q在抛物线上。

故在抛物线(对称轴的右侧)上存在点P(2,1)、Q(1,-1),使四边形ABPQ是正方形。

⑵另解:

在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ是正方形。

延长CA交抛物线于Q,过B作BP∥CA交抛物线于P,连PQ,设直线CA、BP的解析式分别为y=k1x+b1,y=k2x+b2,

∵A(-1,0),C(-3,1),

∴CA的解析式,同理BP的解析式为,

解方程组得Q点坐标为(1,-1),同理得P点坐标为(2,1)。

由勾股定理得AQ=BP=AB=,而∠BAQ=90°

∴四边形ABPQ是正方形。

故在抛物线(对称轴的右侧)上存在点P(2,1)、Q(1,-1),使四边形AB

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2