空间激光通信Word下载.docx

上传人:b****2 文档编号:3906560 上传时间:2023-05-02 格式:DOCX 页数:15 大小:1.09MB
下载 相关 举报
空间激光通信Word下载.docx_第1页
第1页 / 共15页
空间激光通信Word下载.docx_第2页
第2页 / 共15页
空间激光通信Word下载.docx_第3页
第3页 / 共15页
空间激光通信Word下载.docx_第4页
第4页 / 共15页
空间激光通信Word下载.docx_第5页
第5页 / 共15页
空间激光通信Word下载.docx_第6页
第6页 / 共15页
空间激光通信Word下载.docx_第7页
第7页 / 共15页
空间激光通信Word下载.docx_第8页
第8页 / 共15页
空间激光通信Word下载.docx_第9页
第9页 / 共15页
空间激光通信Word下载.docx_第10页
第10页 / 共15页
空间激光通信Word下载.docx_第11页
第11页 / 共15页
空间激光通信Word下载.docx_第12页
第12页 / 共15页
空间激光通信Word下载.docx_第13页
第13页 / 共15页
空间激光通信Word下载.docx_第14页
第14页 / 共15页
空间激光通信Word下载.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

空间激光通信Word下载.docx

《空间激光通信Word下载.docx》由会员分享,可在线阅读,更多相关《空间激光通信Word下载.docx(15页珍藏版)》请在冰点文库上搜索。

空间激光通信Word下载.docx

LLCD除了实现月地高速通信外,还实现了cm距离精度的测距功能[3]。

1.2,LCRD项目[4~5]

2013美国NASA提出LCRD激光通信卫星中继项目(后面的数据都是预定的,还未实测),任务包括:

高速地面和GEO双向通行;

GND-GEO-GND中继实验;

验证PPM适合深空通信和功率受限的小型星地通信,DPSK适合近地高速通信。

如图3所示,LCRD终端包括DPSK模块、PPM模块和光学控制模块[5]。

PPM模块与LLCD的PPM模块类似,下行将使用1/2码率串行级联16-PPM的turbo码,上行4-PPM,使用硬判决方式,时钟、速率等和LLCD一样,调制模块使用的是MOPA结构,CW激光器经马赫-曾德尔调制器调制后,再经二阶EDFA放大到0.5W平均功率发射。

接收机有前置放大器,后分三路,分别用以通信、时钟恢复、空间跟踪。

DPSK模块有着优越的噪声耐性,因而可以支持极高的速率,速率72Mbps~2.88Gbps(编码后1.25Gbps),未来改进中有望支持10Gbps。

DPSK模块的调制过程与PPM模块的几乎一摸一样,但是DPSK功率要求高,受限于EDFA平均功率,DPSK模块只在小部分时间内发送脉冲[4]。

DPSK解调模块使用平衡接收和硬判决方式,与BPSK解调方式不同,DPSK不需要本地振荡器,只需要将一部分信号光延时后与原信号干涉即可。

地面站有两个,一个是LLCD项目中的LLGT地面站,可接收和发射PPM信号。

另一个是OCTL地面站,可接受和发射DPSK和PPM信号。

图3卫星LCRD终端

1.3,其他PPM项目

2009美国NASA提出MLCD[6](火星激光通信演示验证),如图4所示,火星到地球信道衰减较大,因此将使用PPM调制方式,计划实现1~100Mbps深空高数据远程通信,卫星上用直径30.5cm天线,采用CCD成像接收,发射用MOPA结构。

地面采用直径1m光学天线,4路复用,或者6路直径30cm天线,波长1060nm。

图4太阳系信道衰减图

SILEX[7~8]是2001年法国在GEO和LEO卫星进行的通信实验,通信距离4000km,调制方式为PPM,速率为50Mbps,误码率为10^-6。

OPTEL[9]是瑞士的一个激光通信项目,短距离到长距离多个卫星终端2000~80000km,速率在1.5~2.5Gbps之间。

OPTEL-25终端:

LEO-LEO,调制方式为BPSK,信号光波长1064nm功率1.25W,使用信标光瞄准捕获,信标光波长808nm。

OPTEL-u终端,星地通信卫星,下行2X1.25Gbps,调制方式OOK,可切换至8-ppm,上行调制方式为16-PPM。

2,OOK

早期的项目使用的一般是OOK,日本的LUCE、欧洲的OPTEL、美国的OPLAS使用或者部分使用OOK调制方式。

2.1,OPALS项目[10~13]

OPALS项目是美国JPL(喷气动力实验室)2014年实施的空间站与地面站激光通信实验,考虑到价格和风险等因素,OPALS的终端没有使用最先进的激光通信科技,终端结构如图5所示。

OPALS的主要作用是获得大气干扰数据,测试连接可靠性,测试开环瞄准捕获跟踪的性能。

OPALS为单向通信链路,下行主要参数有:

调制方式为OOK,速率30~50Mbps,误码率10^-4,通信波长1550nm,平均功率2.5W,传输距离700km。

OPALS的瞄准系统和光学镜头安装在2轴平衡架上,上面装有等步进马达,能够调节110°

X40°

范围的发射角度。

光学模块上有一个976nm感光相机用以捕获和跟踪地面信标光,还有一个瞄准仪用来发射信号光。

地面站OGTL光学镜头用以发射976nm信标光和接收1550nm信号光。

标激光波长976nm,功率5W,光束角度1.7mrad。

地面站和空间站通过RF通信来分析激光通信的性能。

图5OPALS终端

2.2,其他OOK项目

LUCE[14~15](前身是第一个星地激光通信终端LCE,1995,LEO-GND,速度1.04Mbps)是日本和欧洲早期进行的一个激光通信实验项目。

实验结果如下:

(1)2005日本和欧洲进行了GEO-LEO通信实验,通信距离48000km,发射波长847nm,接收波长819nm,调制方式为OOK,接收速率为2.048Mbps,发射速率50Mbps,误码率达10^-7。

(2)2006年日本进行GEO-GND通信实验,在OICETS卫星与NICT地面站间进行激光通信,发射波长847nm,接收波长819nm,调制方式为OOK,上行速率为2.048Mbps,下行速率为50Mbps,误码率10^-7。

3,PSK

欧洲的LCTSX、EDRS和美国的LCRD使用或者部分使用PSK调制方式。

3.1,LCTSX项目和EDRS项目[16~18]

2008年欧洲开始实施LCTSX项目及后续的EDRS项目(2014)。

LCTSX项目欧洲做了三个LCT终端,两个在卫星站,一个在地面站。

LCTSX的LCT终端总功率120W(光传输功率0.7W),镜头镜头125mm,体积0.5mX0.5mX0.6m。

发射机由LD泵浦源和Nd:

YAGMISER激光器组成,LD泵浦源模块包括两个LD阵列,一个使用一个备用,每个阵列有多个LD,目的是提高发射机的使用寿命。

如图6

(1)所示是LCT调制解调原理图,种子光经相位调制器将电信号调制到光上,经光放大器发射到信道上。

接收机是基于光学costas锁相的BPSK零差解调系统,是灵敏度最高的接收系统。

光学锁相环需解决多普勒频移等因素,使接收信号与本振同频,再使用本振和接收信号光干涉,拍出RF信号,再经滤波得到RF信号。

从原理图还可以看出这些通信用光信号的另一个作用是瞄准。

考虑到GEO-GND实验距离更远,光衰减更大,EDRS项目的LCT终端和LCTSX的LCT终端有些不同,LCT终端总功率160W(光功率2.2W),镜头135mm,大小0.6mX0.6mX0.7m。

EDRS的GEO-GND链路目前先使用RF通信,因为LCT终端镜头大小适应LEO,对于GEO来说太小,后续将改为激光通信。

相比LCTSX,EDRS提高的是通信时间和实用性。

实验结果如下:

(1)LEO-LEO实验:

TerraSAR-X卫星与NFIRE卫星;

二相相移键控/零差相干解调,调制方式BPSK,波长1064nm,距离1000~5100km,速率5.625Gbps(24个信道),误码率小于10^-7。

(2)LEO-GND-LEO中继实验:

距离1000km,上行误码率10^-5,下行零误码,卫星接收后解调,再调制发射,其他数据同上。

GEO-LEO实验(欧洲EDRS项目,2014年):

Sentinel1卫星与Alphasat卫星。

设计距离45000km,调制方式BPSK,速率1.8Gbps,误码率10^-8,

LCTSX的LCT终端使用PAT(瞄准,捕获,跟踪)建立通信,具体步骤如图6

(2)所示。

OPTEL等项目的瞄准捕获系统是通过使用与通信波长不同波长的广角信标激光实现的,与这些项目不同,LCT没有使用广角信标激光。

如图6

(2)所示,卫星上有星历表,先通过星历表计算轨道,用以粗瞄准,然后LCT的通信用激光器进行空间捕获,捕获成功后再进行外差追踪,对其频率捕获,通过光学costas锁相环进行锁相,使本地振荡器与信号光同频,实现零差追踪,最后通过零差解调系统实现通信功能。

图6

(1)LCT的调制解调系统

(2)PAT系统

3.2,其他PSK项目

LCRD和OPTEL-u后续将使用DPSK调制方式。

如图7所示,从星座图可以看出,PSK的平衡接收机灵敏度相对OOK有3dB优势,同时文献中也提到归零码优于不归零码[19]。

而上面提到过,DPSK相对BPSK不需要本地振荡器,也就不需要光锁相环等结构,解调模块简单。

图7OOK和DPSK的星座图

图8是DPSK,OOK,PPM的带宽系数(图中横坐标,单位[(bit/s)/Hz]^-1)与需要的信噪比(图中纵坐标,PPB光子每比特)与香农极限的比较图[20]。

DPSK(带前置放大器)在兼顾PPB和带宽利用率的时候性能优越,硬判决条件下在3光子每比特(5dB)时带宽利用率达到了0.5bit/s/Hz,明显优于OOK和PPM。

带宽系数比较大时,PPM需要的光子每比特数较低,性能较好,且带宽系数越低,PPM的阶数越大性能越好。

例如带宽系数大于100时,1024-PPM优于256-PPM优于4-PPM优于2-PPM。

M进制ppm在功率受限时也表现良好,且随着带宽系数增加,越来越接近香农极限。

图8OOK,DPSK,PPM性能对比图

上述使用PPM和OOK的项目速率一般在M级别,而使用PSK的项目速度能达到G级别,结合上面说到美国LCRD项目的任务,我们可以初步判断判断在近地功率受限小项目以及深空(地月、地火)通信等功率受限信道中适用PPM,而近地(星地、星间)高速通信则适用DPSK。

俄罗斯的SLS项目因为没有查到通信方式,所以放到最后讲下主要参数。

SLS[21~22]是2012俄罗斯航天部门在国际空间站和北高加索地面站进行的激光通信实验。

通信距离为1000km,空间站发射波长1550nm,光发射功率6W,测试传输速率3/125/622Mbps,连接时间小于5min;

地面站发射波长850nm速率3Mbps,连接时间小于10min。

4,其他空间光通信相关进展

前文的项目都是星间通信或者星地通信,本节将简要介绍星空、空地等链路的相关项目以及国内相关进展。

4.1,星空

LOLA项目[23]是法国2006年进行的一个星空通信实验,由高轨道Artemis卫星与某飞机进行激光通信实验,通信光波长为848nm,功率仅为104mW,上行调制方式为BPPM(二进制PPM),速率为2Mbps,下行链路调制方式为OOK,速率为50Mbps。

飞机的飞行高度为9km,与Artermis卫星的通信距离达到了40000km。

4.2,空地

OCD项目是2005年美国喷气推进实验室进行的一个空地激光通信项目,高空飞机飞行高度10~23km,光波长1550nm,功率200mW,调制方式为OOK,速率达到了2.5Gpbs。

ARGOS是2008年德国DLR航空部门在飞机与地面站之间进行的激光通信实验,距离为10~85km,速率为150Mbps。

2013年又进行了实验,飞机与地面站距离大于50km,飞行速度0.7马赫,速率达到了1.25Gbps。

4.3,空空

Falcon是2011年美国ITT公司进行的一个空空激光通信实验,两家飞机距离94~132km进行激光通信,光波长1550nm,速率2.5Gbps,误码率10^-6;

4.4,地地

2005年德国DLR航空部门在LaPalma岛屿和Tene-rife岛屿进行了地地激光通信实验,使用的是BPSK调制方式,通信距离为142km,速率达到了5.6Gbps;

2006年美国约翰普金斯大学应用物理实验室在飞艇和地面车载终端之间进行了激光通信实验,通信距离1.4km,使用波分复用速度达到了80Gbps[24]。

2009年某实验室巴黎两个大楼进行了激光通信实验,通信距离212m,速率达到了1.28Tbps(32路波分复用X40Gbps)[25]。

4.5,国内相关进展

国内空间激光通信进展如图9所示[26]。

图9国内空间激光通信进展

 

缩写:

GEO:

Geosynchronousorbit,高地球轨道,2000km以上

LEO:

LowEarthorbit,低地球轨道,2000km以下

GND:

地面

MOPA:

主振功率放大器

PAT:

pointing,acquisition,tracking,瞄准,捕获,跟踪

PPB:

Photonsperbit,光子每比特

CCD:

Charge-coupledDevice,CCD图像传感器

参考文献

[1]MatthewE.Grein*,AndrewJ.Kerman,EricA.Dauler.AnopticalreceiverfortheLunar

LaserCommunicationDemonstrationbasedonphoton-countingsuperconducting

nanowires.Proc.ofSPIEVol.9492949208-1,2015

[2]https:

//esc.gsfc.nasa.gov/267/271/Space-Terminal.html

[3]M.L.Stevens,R.R.Parenti,M.M.Willis.TheLunarLaserCommunicationDemonstration

time-of-flightmeasurementsystem:

overview,on-orbitperformanceandranging

analysis.Proc.ofSPIEVol.9739973908-12,2016

[4]BernardL.Edwards,DaveIsrael.OverviewoftheLaserCommunicationsRelay

DemonstrationProject.

[5]BernardLEdwards,DavidJIsrael,DonaldEWhiteman.ASpaceBasedOptical

CommunicationsRelayArchitecturetoSupportFutureNASAScienceandExploration

Missions.Proc.InternationalConferenceonSpaceOpticalSystemsandApplications

(ICSOS),2S6-1,Kobe,Japan,May7-9,2014

[6]D.M.Boroson,A.Biswas,B.L.Edwards.MLCDOverviewofNASA’sMarsLaser

CommunicationsDemonstrationSystem.

[7]ZoranSodnik,BernhardFurch,HanspeterLutz.Free-SpaceLaserCommunicationActivities

inEurope:

SILEXandbeyond.IEEE,0-7803-9556-5/06/$20.00,2006

[8]T.Tolker-Nielsen,J-C.Guillen.SILEXTheFirstEuropeanOpticalCommunicationTerminalin

Orbit.EESAbulletin96november1998

[9]DreischerThomas,ThiemeBjö

rn,BacherMichael.OPTEL-μACompactSystemfor

OpticalDownlinksfromLEOSatellites

[10]MatthewJAbrahamson,OlegVSindiy,BogdanVOaida.OPALSMissionSystem

OperationsArchitectureforanOpticalCommunicationsDemonstrationontheISS.

SpaceOpsConference,2014

[11]BogdanVOaida,MatthewJAbrahamson,RobertJWitoffOPALS.AnOptical

CommunicationsTechnologyDemonstrationfromtheInternationalSpaceStation.

IEEE,978-1-4673-1813-6/13/$31.00,2013

[12]JessicaNBowles-Martinez,BarisIErkmen,ParkerAFagrelius.ACOTS-BasedTechnical

DemonstrationofOpticalCommunications

[13]M.W.Wright,M.W.Wilkerson,R.R.Tang.QualificationTestingofFiber-basedLaser

Transmittersandon-orbitValidationofaCommercialLaserSystem.ICSO,2014

[14]TakashiJono,YoshihisaTakayama,NobuhiroKura.OICETSon-orbitlasercommunication

experiments.InLasersandApplicationsinScienceandEngineering,pages

610503{610503.InternationalSocietyforOpticsandPhotonics,2006.

[15]RyanW.Kingsbury,Prof.KerriL.Cahoy.OpticalCommunicationsforSmallSatellites

[16]StefanSeel,HartmutKä

mpfner,FrankHeine.SpacetoGroundBidirectionalOptical

CommunicationLinkat5.6GbpsandEDRSConnectivityOutlook.IEEEACpaper#1111,

Version2,UpdatedOctober27,2010

[17]MarkGregory,FrankHeine,HartmutKä

mpfner.Commercialopticalinter-satellite

communicationathighdatarates.OpticalEngineering51(3),031202,2012

[18]M.Gregory,F.Heine,H.Kä

mpfner1.TesatLaserCommunicationTerminalPerformance

Resultson2.6GbitCoherentInterSatelliteandSatellitetoGroundLinks.ICSO,2010

[19]A.H.Gnauck,P.J.Winzer.OpticalPhase-Shift-KeyedTransmission.JournalofLightwaveI

Technology,VOL.23,NO.1,2005

[20]DavidO.Caplan.Lasercommunicationtransmitterandreceiverdesign.J.Opt.Fiber.

Commun.Rep.4,225–362,2007

[21]V.Grigoryev,V.Kovalev,V.Shargorodskiy,V.Sumerin.High-bit-rateLaserSpace

CommunicationTechnologyandResultsofon-boardExperiment.ICSOS,2014

[22]https:

//directory.eoportal.org/web/eoportal/satellite-missions/i/iss-btls

[23]VincentCazaubiel,GillesPlanche,VincentChorvalli.LOLAa40.000kmOpticalLink

BetweenanAircraftandaGeostationarySatellite.ESASP-621,June2006

[24]SovaRM,SluzJE,YoungDW.etal.80Gb/sfree-spaceopticalcomm

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 党团工作 > 其它

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2