计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt

上传人:聆听****声音 文档编号:4409523 上传时间:2023-05-03 格式:PPT 页数:68 大小:2.69MB
下载 相关 举报
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第1页
第1页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第2页
第2页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第3页
第3页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第4页
第4页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第5页
第5页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第6页
第6页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第7页
第7页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第8页
第8页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第9页
第9页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第10页
第10页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第11页
第11页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第12页
第12页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第13页
第13页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第14页
第14页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第15页
第15页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第16页
第16页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第17页
第17页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第18页
第18页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第19页
第19页 / 共68页
计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt_第20页
第20页 / 共68页
亲,该文档总共68页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt

《计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt》由会员分享,可在线阅读,更多相关《计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt(68页珍藏版)》请在冰点文库上搜索。

计算固体力学课件ComputationalSolidMechanics3章节优质PPT.ppt

,

(2)Theuniquedistinctionistheconstitutiverelations,andtransformationisavailable.SameFEModelcanbeused,PLANESTRAIN,10,6.TheMinimumPotentialEnergyPrinciple,Thestrainenergydensityfunctionis,Bu:

fixedboundaryB:

freeboundary,11,Eulerequations,Naturalboundaryconditions,12,7.RayleighQuotient,Kineticcoefficientwithoutconcentratedmass,Maximumpotentialenergywithoutconcentratedsprings,13,8.FiniteElements,

(1).Rectangularelements:

inCartesiancoordinates,suitableforregulardomain.,

(2).Triangularelements:

inareacoordinates,suitableforregularandirregulardomain,ortakingastransitionelementofdifferentsizerectangularelement,(3).Iso-parametricelements:

inCartesiancoordinates,suitableforanydomain.,14,9.RectangularElements,Useonedimensionalfunctions:

Questions(3):

(1)C0orC1?

Completeness?

(2)Thenumberofnodalparametersforeachnode?

(3)Compatibilityatnodeandalongsideline?

15,Bilinearelement:

n=2,similarly,Questions

(2):

(1)why,?

(2)Howtointerprettheshapefunctiongeometrically?

16,Thediscretizationofstrainenergygivestheelementstiffnessmatrix,Attention:

Stiffnessmatrixdependsona/bonly.largeorsmallelementhasthesamestiffness?

(2)Finedmeshisgoodornot?

(3)Thenodaldisplacementareexact?

17,双线性矩形单元,双线性矩形单元的质量矩阵,18,19,Attention:

Massmatrixandloadvectorisproportionaltotheareaa*boftheelement.,

(2)Concentratedloadisasingularloadforplaneproblem,thecorrespondingdisplacementisinfiniteintheory!

Thefinerofthemesh,thelargerofthedisplacement!

20,10.TriangularElements,

(1)Areacoordinate:

(2)RelationofareaandrectangularCartesiancoordinate,Questions

(2):

Twoofthemareindependent,Whytointroduce1,2,3?

(2)1,2,3varieslinearly?

21,(3)Allowabledisplacementfunction,Attentions

(2):

(1)Completepolynomials,impropernodecollocation.,

(2)non-completepolynomialsmaycausecalculationdifficulties!

BecauseitisC0,soLagrangeinterpolationpolynomialscanbeuseddirectly:

22,nistheorderofelement,isthecoordinateofnodei,istotalnumberofnodesoftheelement,when,Attentions:

(1)ConstantStrainTriangularelement,CST,

(2)Lineholdsafterdeformation!

Socompatibilityholds!

23,when,:

elementwithlinearstrain,Usefulincalculationofstructuralmatrices!

24,11.CurvilinearElements,Attentions:

(1)hardtoprovetheconvergenceofcurvilinearelement,

(2)Curvilinearormappingelementfromparentelement,parentelement,curvilinearelement,25,1)GeometricalField,Itisneededtodefinethearbitrarycurvemathematically.,Niistheshapefunctionofparentelement,mappingmisthenumberofthenodesused,Discussions(side14):

(1)Twonodesdefinealine(1,4),

(2)Threenodesdefineaparabola(1,8,4),(3)Alineneedtwonodes,notthree,emphasizingthatitisnotnecessarytouseallnodestodefinethegeometry.,26,2)DisplacementField,Ni:

theshapefunctionofparentelementn,m:

thenumbersofthenodesusedtodefinedisplacementandgeometry.,Whenn=m,theiso-parametricelement等参元,usedwidely,Whennm,thesub-parametricelement亚参元,displacementgradientislarge,Whennm,thesuper-parametricelement超参元displacementgradientissmall,geometryiscomplicate,27,3)ElementStiffnessMatrix,Questions:

(1)Howtocalculate/x,/y?

(2)Howtotransformdxdytodd?

(3)Whatisthedistinctionofcalculationmethodofcurvilinearelementwithothertypeelements?

28,

(1)Howtocalculate/x,/y?

Whynotcalculatedirectly?

(3)Thestiffnessmatrix,29,4)TheRelationBetweenTheJacobianMatrixDeterminantAndThePropertyOfCurvilinearElement,

(1)Foursidesarestraightline:

4501800,thendet(J)0if=1800,thendet(J)=0,

(2)Foursidesareparabola,threenodesoneachside:

themiddlenodeshouldbelocatedwithintheinner1/3oftheside.,(3)Theorderofelementislargerthan2:

thepropertyoftheelementdependsonthesignandmagnitudeofJacobianmatrixJ.,30,PracticalApplication(6):

(1)Thestiffnessofbilinearrectangularelementdependsonlyontheratioa/b.,

(2)Theconcentratedloadisasingularload,thecorrespondingdisplacementincreasesasfinenessofthemesh.,(3)TriangularelementwiththreenodesisCST,payattentiontotheaccuracy.,(4)Payattentiontothedifferenceofplacestressandplanestrain.,(5)Shellelementisthecombinationofplaneelementandplateelement.,(6)Theoretically,therearenoexactnodalresultsforplaneproblems,theaccuracyisassuredbythemesh.,31,Homework:

(1)ToanalyzethedisplacementofsideABloadcase1:

concentratedloadactingatpointsA,Bloadcase2:

distributedloadactingonthelineAB,

(2)Tocalculatethefirst10frequencies.,Usingthreemeshes:

(1)1*1

(2)5*5(3)10*10,32,3-2THINPLATEPROBLEM,Assumptions:

(1)Straightnormallineholdsafterdeformation,

(2)Thereisnoextensionorcompressionformiddleplane,(3)Out-of-planestressesaremuchsmallerthein-plane.,and

(2)areKirchhoffhypotheses,33,1Basicformulae,Accordingtoassumption

(1)and

(2):

Accordingtoassumption(3),theconstitutiverelationofplanestressisadopted:

arenecessaryforthebalanceofstresses,34,Relationofgeneralizedstressandgeneralizedstrain,Accordingtothebalanceconditiontheinfinitesimalvolume,wehave:

isN,notN.M,isN/M,notN,Theunitof,Theunitof,35,x,yarecalledasflexurestress,xyastwistingstresstheyareprimary(major)stresses(oddfunctionofz,fromconstitutiverelationanddefinition):

xz,yzastransverseshearingstress,theyaresecondary(minor)stresses(evenfunctionofz,fromequilibriumequation):

zascompressionstress,itissecondary(minor)stresses(fromequilibriumequation):

36,Thedirectionsofmoment,shearforceandtwistingmoment:

37,2Transformationofcoordinates,

(1)Considerationofboundaryconditions,

(2)Derivationofformulae,Tensorofrankone,Tensorofranktwo,38,3TheMinimumTotalPotentialEnergyPrinciple,B:

freeboundaryB:

simply-supportedboundary,w=0Bu:

fixedboundary,w=0,Question:

whynotconsiderboundarytwistingmoment?

39,Followingformulaeareusedinthevariationcalculation:

40,Eulerequilibriumequationbi-harmonicequation,atpointconcentratedloadacting,freeboundaryB,Qn,Mnsarenotindependent,why?

simply-supportedboundaryB,41,4FiniteElement,Attentions:

(1)C1,likebeam;

(2)completecompatiblerequirements:

(3)partcompatibility:

wiscontinuous,arenotcontinuous,(4)excessivecompatibility:

exceptarecontinuous,arealsocontinuous,42,1)Rectangularelementwith12nodalparameters(Zienkiewicz和Clough),Partcompatibleelement:

(1)wiscontinuousatnodeandside,iscontinuousatnode,butnotatsidetakeside14asanexample,43,2)Rectangularelementwith16nodalparameters双三次板单元(Bogner),excessivecompatibleelement:

(1)wiscontinuousatnodeandside,iscontinuousatnodeandsidetakeside14asanexample,(3)iscontinuousatnode,44,3)Rectangularelementwith24nodalparameters(1971年Popplewell和McDonaldpresentedthenodals,Gopalacharyulu和Watkinpresentedthefunctions),excessivecompatibleelement,45,4)Triangularelementwith6nodalparameters,Partcompatibleelement:

(1)wiscontinuousatnodesonly,iscontinuousatmiddlepointsofeachside,(3)Constantinternalmomentelement,46,5)Triangularelementwith9nodalparameters,Partcompatibleelement:

(1)wiscontinuousatnodesandsides,

(2)iscontinuousatnodesonly,Completetopower3,hasnocontributiontodeflectionandderivativetoallnodes,allzerovales,Bazelysuggests,symmetry,47,6)Triangularelementwith18nodalparameters,excessivecompatibleelement,48,CompleteCompatibleTriangularElementWith6NodesAnd12NodalParameters,

(1)ChoseapointO:

(2)Displacementfunctionsof012,023,031arethecompletepolynomialsw1,w2,w3topower3,whichcanbedeterminedby10nodalparametersincluding,(3)Atsideofeachsmalltriangle,wiscontinuous,thecontinuityofnormalderivativeisguaranteedbyfollowingconditions,thethreetemporarynodalparametersarethusdetermined.,49,3-4MINDLIN(REISSNER)PLATE剪切板,Thinplate,Thickplate,50,FiniteElementOfThickPlate:

(1)C0element;

(2)Allowabledisplacementfunction,formedasplaneproblem;

threeindependentdisplacementparameters,(3)Boundaryeffectsofplate;

3.6二维数值模拟问题讨论,51,在NASTRAN中,二维单元包括膜(membrane平面应力)弯板(bendingpane不考虑剪切变形)剪切板(shearpanel)壳(shell考虑剪切变形)默认单元二维实体(2Dsolid如平面应变,轴对称),52,例1:

四边简支板在均布法向载荷作用下中点和E点的挠度分析,薄板经典理论,长宽分别为40,20,厚度为1,53,薄板单元为非协调单元,剪切板单元是协调单元,54,长宽分别为40,20,厚度为5,对于厚板两种单元结果相差大于20,55,例2:

四边简支板在法向集中载荷作用下中点和E点的挠度分析,薄板单元,剪切板单元,56,薄板,厚板,剪切板单元,剪切板单元,薄板单元,薄板单元,面内剪应力分布(剪切板的边界效应),57,例3:

小变形与大变形问题:

四边简支和四边固支板:

刚度变大悬臂板:

刚度边小,58,例4:

频率与模态(薄板),四边简支薄板,59,四边固支薄板,60,四边简支板各阶模态形状:

11,21,31,21,22,41,重频,61,例5:

平面问题,应力约束和平衡条件为,应力解析解,62,方法1:

位移边界,中线在自由端的挠度,与用Euler梁得到的结果完全相同,63,方法2:

边界条件,中线在自由端的挠度,T

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2