XXXX学年八年级数学下册集体备课教案人教版.docx
《XXXX学年八年级数学下册集体备课教案人教版.docx》由会员分享,可在线阅读,更多相关《XXXX学年八年级数学下册集体备课教案人教版.docx(12页珍藏版)》请在冰点文库上搜索。
XXXX学年八年级数学下册集体备课教案人教版
XX-XX学年八年级数学下册集体备课教案(人教版)
本资料为woRD文档,请点击下载地址下载全文下载地址
www.5y
kj.co
m 16.1
分
式
一、教科书内容和课程学习目标
(一)教科书内容
本章的主要内容包括:
分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的
分式方程的解法。
全章共包括三节:
16.1
分式
6.2
分式的运算
6.3
分式方程
(二)本章知识结构框图
三)课程学习目标
本章教科书的设计与编写以下列目标为出发点:
1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。
2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。
3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。
4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。
5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。
四、课时划分
6、1
分式
3课时
6、2
分式的运算
6课时
6、3
分式方程
2课时
复习与交流
课时
八年级数学下册教案
备课人:
课题:
16.1.1
从分数到分式
教学内容:
教学目标
掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:
类比转化、合情推理、抽象概括等。
通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。
重点难点
分式的概念
识别分式有无意义;用分式描述数量关系
教学准备
教师准备
是否需要
学生准备
教学过程设计
《数学课程标准》明确指出:
“数学教学是数学活动的教学,学生是数学学习的主人。
”为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:
发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
(一)
发现新知
在这儿我对教材进行了处理,课本引例是“土地沙化、固沙造林”问题,设问是“这一问题中有哪些等量关系?
”我将引课方式改为通过学生自己构造代数式去发现分式,创设了这样的情境:
.创设情境:
教师给出探究要求:
“代数式”庄园的果树上挂满了“整式”的果子:
t,300,s,n,a-x,0,180,请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。
其中有新的一类代数式吗?
请说一说。
作这样的改动,是基于以下考虑:
原有引例不仅要求学生用分式表示数量关系,还需要列出分式方程。
针对我校学生的实际情况,我认为在起始课上这样的要求过高,而从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。
“好的教师不是在教数学而是激发学生自己去学数学”。
用已给的7个整式进行代数式的构造时,学生可以写出多种多样的式子,里面既有单项式,也有多项式,还有分式。
通过学生对自己所构造的代数式进行观察,创设发现情境,学会把自己的活动作为思考的对象,更好地进行分式概念的建构活动。
2.探索交流:
(1)议一议:
你们所发现的这一类新代数式:
,,……它们有什么共同特征?
它们与整式有什么不同?
(2)类比分数,概括分式的概念及表达形式
被除数÷除数=商数
被除式÷除式=商式
3÷4
=
n÷=
整数
整数
分数
整式
整式
分式
(3)小组内互举例子,判定是否分式
针对学生的发现,采用“议一议”的方式引导学生观察新式子的特征,类比分数,合理联想,从而获得分式的概念及一般表示形式,可谓水到渠成。
通过列举具体例子,互说判别过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析与的本质区别,强调分式的分母中必须含有字母。
(二)再探新知
如何识别分式有意义,是本节课的难点,也是探究学习的好素材。
课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我创设了以下活动供学生自主探究分式有意义的条件。
.探究活动
(1)填表:
a
…
-2
-1
0
2
…
…
…
…
…
(2)概括分式在什么条件下有意义,对一般表达式里的分母B作出取值限定:
B
不能等于零
首先是组织学生独立填写表格。
表格的设计,旨在通过求分式的值,将“代数化”了的分式还原为学生熟悉的分数,通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:
分式的值与字母取值有关,分式并不都有意义。
继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,同时渗透从特殊到一般的数学思想。
2.例题与练习
例1.
(1)当a=1,2时,分别求分式的值
(2)a取何值时,分式
有意义?
你知道吗:
当x取什么值时,下列分式有意义?
(1)
(3)
例1由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。
“你知道吗”采用组内合作然后组间抢答的形式开展活动,激发兴趣。
除课本随堂练习以外,我补充了第(3)问,加深学生对新知识的理解,强调分数线的括号作用,强化分母的整体意识,从而进一步改善学生原有的认知结构。
(三)应用新知
学生的个人知识、直接经验、生活世界是重要的课程资源。
为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,我在此安排了三个问题,让学生通过运用分式表示数量关系,进一步熟悉数学的抽象概括过程,体会分式可以为解决实际问题服务。
.
例2.面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林XX公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务。
如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要(
)个月,实际完成一期工程用了(
)个月。
练习:
.(补充练习)浙江省衢州市常山“天子”牌胡柚为了能提前采收,抢占市场,需要给胡柚套袋以更好地吸收光能。
已知一个果农一天能完成1200只胡柚的套袋工作,现在n个果农完成m个胡柚的套袋工作需要(
)天。
2.(书P60随堂练习2)把甲、乙两种饮料按质量比x:
y混合在一起,可以调制成一种混合饮料。
调制1千克这种混合饮料需多少甲种饮料?
(四)深化拓展
把下列各式写成分式,并试着赋予它实际意义
.1÷a
2.÷
能解释一些简单代数式的实际背景或几何意义是新课标中的明确要求。
“赋予实际意义”对学生是个挑战,可以激发他们的思维和兴趣,活动过程中教师不仅注重学生是否给出了解释,更应关注学生是否进行了思考。
提供的两个分式是初中阶段常用的模型。
第一个可以与倒数、工作效率、等分相联系,学生比较熟悉,应该可以通过独立思考得出;第二个分式可以联想到平均速度、平均售价、加权平均数的求法等问题,但学生相对陌生,教师可以鼓励学生相互合作交流,也可以适当提示分析。
通过这样的逆向思维,可以更好地发展学生的数感、符号感,培养学生的数学意识、创造能力。
(五)小结巩固
.小结
(1)谈一谈:
你这一节课有什么收获?
(知识、方法、情感)
(2)课堂评价(评价表见附表)
“谈一谈”先让每个学生在组内交流,然后派小组代表作答,有助于学生概括能力、表达能力的提高。
课堂中通过学生自评、互评,可以使学生全面地了解自己的学习过程,感受自己的成长与进步,这不仅有利于培养学生的自信心,也为教师全面了解学生的学习状况、改进教学、实施因材施教提供了重要依据。
考虑到学生的个体差异,为更好的促使每一个学生得到不同的发展,同时促进学生对自己的学习进行反思,在课外作业的布置上我安排如下:
2.课后作业
留白:
(供教师个性化设计)
附:
板书设计
教后反思:
留白:
(供心得体会与反思)
授课时间:
_____年_____月____日
八年级数学下册教案
备课人:
课题:
分式的基本性质
教学内容:
分式的基本性质
(1)
教学目标
使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
通过分式的恒等变形提高学生的运算能力.
渗透类比转化的数学思想方法.
重点难点
使学生理解并掌握分式的基本性质,这是学好本章的关键.
灵活运用分式的基本性质和变号法则进行分式的恒等变形.
教学准备
教师准备
是否需要
学生准备
复习提问
.分式的定义?
2.分数的基本性质?
有什么用途?
新课
.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以同一个不等于零的整式,分式的值不变,即:
2.加深对分式基本性质的理解:
例1下列等式的右边是怎样从左边得到的?
由学生口述分析,并反问:
为什么c≠0?
解:
∵c≠0,
学生口答,教师设疑:
为什么题目未给x≠0的条件?
解:
∵x≠0,
学生口答.
解:
∵z≠0,
例2
填空:
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
练习1:
化简下列分式
(1)
(2)
(3)
教师给出定义:
把分式分子、分母的公因式约去,这种变形叫分式的约分.
问:
分式约分的依据是什么?
分式的基本性质
在化简分式时,小颖和小明的做法出现了分歧:
小颖:
;
小明:
你对他们俩的解法有何看法?
说说看!
教师指出:
一般约分要彻底,使分子、分母没有公因式.
彻底约分后的分式叫最简分式.
练习2(通分):
把各分式化成相同分母的分式叫做分式的通分.
(1)与
;
(2)与
解:
(1)最简公分母是
课堂小结
.分式的基本性质.
2.性质中的m可代表任何非零整式.
3.注意挖掘题目中的隐含条件.
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.
留白:
(供教师个性化设计)
附:
板书设计
教后反思:
授课时间:
_____年_____月____日
八年级数学下册教案
备课人:
课题:
分式的的基本性质
教学内容:
分式的的基本性质
(2)
教学目标
理解并掌握分式的性质
利用分式的基本性质对分式进行“等值”变形。
了解分式通分约分的步骤和依据,掌握分式通分约分的方法
、
使学生了解最简分式的意义,能将分式化为最简分式。
重点难点
分式的基本性质
分子、分母是多项式的分式的约分和通分。
教学准备
教师准备
是否需要
学生准备
教学过程设计
一、
创设问题情景,引入新课。
活动1
问题:
看如何做不同分母的分数的加法。
这里将异分母化为同分母的依据是什么?
由分数的基本性质可知,如果数c不为0,那么:
。
一般地,对于任意一个分数有:
,是数。
二、
讲授新课
活动2
、
思考:
类比分数的基本性质,你能想出分式有什么性质吗?
2、
想一想:
怎样用分式的基本性质?
教师出示问题,学生分组讨论、归纳。
分式是一般化了的分数,类比分数的基本性质,我们可以推想了出分式的基本性质:
分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
注:
分式的分子、分母都乘以(或除以)同一个不为0的整式中的“都”“同一个”“不为0”应特别注意。
分式的基本性质用式子表示为:
是整式。
利用分数的基本性质可以对分数进行等值变形。
利用分式的基本性质也可以对分式进行等值变形。
活动3
【例2】填空
(1)
(2)
教师出示例题,学生分析解决问题。
师生共同分析:
看分母是如何变化的,是“多”还是“少”?
想分子如何变化;看分子如何变化,是“多”还是“少”,想分母如何变化。
活动4
思考:
联想分数的通分、约分,由上例你能想出如何对分式进行通分、约分吗?
教师出示问题,学生自主进行分析。
分析:
在例题
(1)中,我们利用分式的基本性质,使分子和分母同乘以适当的整式,不改变分式的值,把和化为相同分母的分式,这样的分式变形叫分式的通分。
在例题
(2)中,我们利用分式的基本性质,约去的分子和分母的公因式,不改变分式的值,使化为,这样的分式变形叫做分式的约分。
注意:
(1)分式约分约去的是:
分子和分母的公因式。
(2)如果分子、分母是单项式,公因式应联系数的最大公约数,相同的字母取它们中最低次幂;如果分子和分母是多项式,应首先把它们分解因式,然后找它们的公因式,最后约去公有的因式。
(3)分式的约分的最后结果应为最简分式。
即:
分子分母没有公因式。
(4)通分的关键是几个分式的公分母,从而确定各分式的分子、分母同乘以什么样的“适当整式”,才能化为同分母。
(5)确定公分母的方法:
系数取每个分母的系数的最小公倍数,再取各分母所有的因式的最高次幂的积,一起作为几个分式的公分母,我们把这个公分母叫最简公分母。
活动5
【例3】约分
(1)
(2)
【例4】通分
(1)
(2)
设计意图:
掌握分式的约分和通分,进一步体会类比的思想。
教师提出问题,学生试着完。
教师应重点关注:
(1)通分约分的依据;
(2)约分后的结果;(3)公因式的确定。
例3分析:
为了约分要先找出分子分母的公因式。
解:
(1)
(2)
例4分析:
为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母。
解:
略
活动6
思考:
分数和分式在约分和通分的做法上有什么共同点?
这些做法根据了什么原理?
教师在学生回答的基础是,强调:
分式的约分和通分的依据是分式的基本性质。
活动7
课堂练习:
p第10页练习1、2
三、
课时小结
活动8:
小结
学生思考。
试着独立完成,然后再分组讨论、交流本节所学的内容:
、
掌握分式的基本性质。
2、
学会分式的约分方法。
课后作业p第8页4、5、6、7、9、11、12。
www.5y
kj.co
m