在数学教学中聚焦核心概念渗透思想方法Word文档格式.docx
《在数学教学中聚焦核心概念渗透思想方法Word文档格式.docx》由会员分享,可在线阅读,更多相关《在数学教学中聚焦核心概念渗透思想方法Word文档格式.docx(47页珍藏版)》请在冰点文库上搜索。
5可以提供许多机会,用以发展与本学科特色相关的认知技能和逻辑思维过程;
6可以用于组建更高阶的概念,而且可望与其他学科的概念结构建立联系;
⑦表达了科学在人类智力成果中所占有的地位。
研究者们认为,核心概念可以根据学生的认知能力和经验,按照一定的系列逐渐进阶发展,以层层深入的方式被学生理解。
这些逐渐进阶的核心概念表现出了概念的获得和发展,是可持续学习的基础。
2011版《数学课程标准》,修订组通过广泛听取各方意见和建议,对《课程标准实验稿》中提出的6个核心概念“数感、符号感、空间观念、统计观念、应用意识和推理能力”做了调整。
共提出了10个核心概念。
这就是:
数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
这十个核心概念可以分成三层:
第一层,主要体现在某一内容领域的核心概念。
数感、符号意识、运算能力主要体现在数与代数领域,空间观念主要体现在图形与几何领域,数据分析观念主要体现在统计与概率领域;
第二层,体现在不同内容领域的核心概念,包括几何直观、推理能力和模型思想;
第三层,超越课程内容,整个数学课程都应特别注重培养学生的应用意识和创新意识。
核心概念的确定,对于教师教学和学生的学习都具有极为重要的意义。
(二)为什么要提出核心概念
核心概念的设计与课程目标的实现、课程内容实质的理解以及教学的重点难点的把握有密切关系。
第一、这些核心概念的内涵在性质上是体现学习主体---学生的特征,他们涉及的是学生在数学学习中应该建立和培养的关于数学的感悟、观念、意识、思想、能力等。
第二、这些核心概念不是设计者超乎于数学课程之外加的,而是实实在在蕴涵于具体的课程内容之中,或者与课程内容紧密结合的,从这一意义上说,这些核心概念往往是一类课程内容的核心或聚焦点,它有利于我们把握课程内容的线索和层次,抓住教学中的关键,并在数学过程中有机地发展学生的数学素养。
第三、这些核心概念本质上体现的是数学的基本思想。
数学的基本思想指对数学及其对象、数学概念和数学结构及数学方法的本质性认识。
数学的基本思想集中反映为数学抽象,数学推理,数学思想模型。
这些思想是数学学习中的重要目标。
不难看出,核心概念对数学基本思想的体现是鲜明的。
比如,与“数与代数”部分内容直接关联的数感、符号意识、运算能力、推理能力和模型思想等核心概念就不同程度的直接体现了抽象、推理和模型的基本思想要求。
这启示我们,核心概念的教学要更关注其数学思想本质。
第四、这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,并通过教师的教学予以落实。
仅以“数学思考”和“问题解决”部分的目标设定来看,《课程标准》就提出了:
“建立数感、符号意识和空间观念,初步形成几何直观和运算能力”;
“发展数据分析观念、感受随机现象”;
“发展合情推理和演绎推理能力”;
“增强应用意识,提高实践能力”;
“体验解决问题方法的多样性,发展创新意识”。
这些目标表述几乎涵盖了所有的核心概念。
常见的概念教学程序是:
①从学生熟悉的事例或数学知识的新旧联系中引入→②给出定义→③让学生举例→④通过反例对概念进行辨析→⑤通过各种练习让学生把握概念的内涵与外延。
这五个步骤包括了概念的引入——概念的形成——概念的明确——用符号表示概念——概念的巩固和应用。
但是,在课堂教学中老师们对这五个环节的把握并不到位,原因在于许多教师认为,数学就是学一些结论去解题。
在这五个教学环节中,很多老师认为,重心是⑤,因为⑤形成学生的解题能力,他们认为①②只是形式,忽视它的教学价值,其实从①→②,目的是使学生看到数学概念的背景和来源,体验和体会概念的形成过程,也就是认识上的适应,从而引起认知结构的新建构,是学生完成认知心理学上的“同化、顺化或与平衡”的重要认知过程。
例如:
“三角形”概念的教学,直接给出并让学生熟读“由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形”,由于没有实际问题的呈现,所以学生觉得没有任何意义,因为不需要用这个定义去判定一个图形是否三角形。
如果要让学生真正理解这一概念,应该让学生从“金字塔、飞机、建筑物”等许多“三角形”常见图片中,找出其共性,抽象出“三角形”图形。
在几何与图形部分的概念教学中忽视“几何直观”。
梯形定义的教学强调让学生熟读“一组对边平行,且另一组对边不平行”,但不重视让学生先画一个梯形与平行四边形,去观察比较,从而理解定义。
在统计与概率部分有关概念的教学中忽视“数据分析的理念”。
如“平均数、概率”概念的教学仅停留在计算的层面,实际上计算并不是重点,重点是用这两个概念去分析数据,得出结论。
再如“随机事件”概念的教学,很多学生误认为“火星上有没有人”是随机事件。
火星上有没有人——要么有,要么没有,只是我不知道结果,这没有任何随机性,叫未知事件,不是随机事件。
一个硬币在没有掷以前,判断是正面向上还是反面向上是随机事件,如果掷完了后用纸盖住让第三个人猜,这已不是随机事件,因为它不是“结果不确定”,而是“结果已确定”而我不知道。
所以说这些核心概念的提出,一方面有利于教材编写者和广大教师更好地理解课程目标和内容,另一方面有利于广大教师整体把握数学教学的核心,合理而有效地设计和组织教学活动。
就是说对他们的理解与认识成为我们正确把握课程内容从而实现课程目标的重要抓手。
(三)核心概念在课堂教学中的地位
美国地平线研究组主席维斯及高级研究助理帕斯利经过了18个月的观察,对364节课详细分析,发现优质课堂主要有几个特征,其中包括:
(1)在课堂教学过程中,教师善用多种策略(如:
展现真实世界中的实例,为学生提供一手经验等),为某个科学概念提供清晰的阐释;
(2)吸引学生从事动脑筋的活动;
(3)帮助学生理解学科的核心概念等。
作为优质课堂的主要特征之一,围绕学科核心概念进行课堂教学成为国际科学教育界关注的热点。
(四)10个核心概念的理解
1、数感
一般人提起数感,总感到它是比较玄乎的。
也有人质疑,像“数感”这种因人的感觉而异的、较“虚”的东西有必要作为核心概念提出来吗?
一些老师也感到,数感作为课堂教学目标不好把握。
这些情况说明,有必要加强教师对数感的认识。
什么是数感?
“数感”一词的英文表述为“NumberSense”,可翻译为多种意思,如感觉、感官、理念、意识、领悟等。
认为数感是“关于数字(量)的一种直觉”;
数感与语感、方向感、美感等类似,都会有一种“直感”的涵义,具有对特定对象的一种敏感性及相关的鉴别(鉴赏)能力;
数感是一种主动地、自觉地或自动地理解数和运用数的态度和意识,是一种基本的数学素养。
或认为数感包含感觉、知觉、观念、能力,可以用“知识”来统一指称,这一知识是程序性的、内隐的、非结构性的。
《标准实验稿》提出“数感主要表现在:
理解数的意义;
能用多种方法来表示数;
能在具体的情境中把握数的相对大小关系;
能用数来表达和交流信息;
能为解决问题而选择适当的算法;
能估计运算的结果,并对结果的合理性做出解释。
”
2011版《课程标准》的提法是:
“数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
数与数量、数量关系、运算结果估计,这主要是基于义务教育阶段数学课程内容的范围并根据学生的实际所做出的要求,这有利于教师在教学中更好地把握数感培养的几条主线。
一是关于数与数量。
在小学低段,儿童对数的感悟是从数数学习辨认各组实物对象的多少开始建立的,学习用数表示多少的第一步就是数数,随着学习年级的增高,学生经历了更多的对数意义的感悟,如对分数、负数、有理数……的感悟,并形成对数的各种表征方式的理解,这是一个逐渐展开的过程。
二是关于数量关系。
它是培养学生数感的另一个层次,即不同年龄段的学生在理解了所学数的意义及表征后,他就具备了理解一定数量关系的基础,如学生在学习分数概念后,就建立起整体与部分之间关系的感悟,依赖于具体情境或图形,会分辨两个分数的大小。
随着他们数感的增强,学生年级的升高和数系的扩充,学生对数量关系的感悟也会逐步提升,最后达到对具体问题所涉及的数量关系的整体把握。
三是关于运算结果估计。
它是数学课程中所占学时较多的内容,过去更多关注运算法则的掌握和运算技能的训练,其实通过运算培养学生的估算意识和能力,以此发展学生的数感应成为我们现在课程教学的目标。
因此,《课程标准》在“数与代数”部分多处提到估计及估算的要求。
如,“在生活情境中感受大数的意义并能进行估计”“能结合具体情境,选择恰当的单位进行简单估算,体会估算在生活中的作用”(第一学段);
“在解决问题的过程中,能选择合适的方法进行估算”“会根据给出的有正比例关系的数据在方格子上面图,会根据其中一个量的值估计另一个量的值”(第二学段);
“能用有理数估计一个无理数的大致范围”(第三学段)。
所以,对运算结果的估计反映的是学生对数学对象更为综合的数感。
如何培养学生的数感
数感既然是对数的一种感悟,它就不会像知识、技能的获得那样立竿见影,它需要教师在教学中潜移默化,积累经验,经历一个逐步建立、发展的过程。
具体做法是如下。
第一,重视低学段学生对数的感觉的建立,并在数感培养上处理好阶段性和发展性的关系。
培养学生的数感,第一学段数学是重点。
《课程标准》在第一学段目标中,明确指出:
“在运用数及适当的度量单位描述现实生活中的简单现象,以及对运算结果进行估计的过程中,发展数感。
”教学要选择适合学生年龄特征的方式,提供实物,联系身边具体事物,观察操作、游戏等都是较好的方式,如刚入学的儿童在认识10以内数的时候,应该通过实物、图片等,将数与物对应起来。
然后,结合具体教学内容,逐步提升和发展学生的数感。
在第二学段应结合学生所熟悉的现实素材感受大数的意义,并能对一些问题进行估算;
能了解负数的意义.用负数表示日常生活的问题,建立起对负数的数感。
第二,紧密结合现实生活情境和实例,培养学生的数感。
由于现实生活情境和实例,与学生的实际生活经验密切相连,不仅能够为学生提供真实自然的数的感悟环境,也能让学生在数的认知上经历由具体到抽象的过程,逐步发展学生关于数的思维,理解现实生活中数的意义,理解或表述具体情境中的数量关系。
如让学生通过调查、讨论,弄清楚自己的学号、地区邮政编码、汽车牌照号、身份证编号的规律和意义,进一步建立数感。
第三,让学生多经历有关数的活动过程,逐步积累数感经验。
在具体的数学活动中,让学生动脑、动手、动口,多种感官协调活动,加之相互交流,这对强化他们感知思维,积累数感经验非常有益。
如让学生调查:
从你家到学校的路程大约有多远?
你到学校大约要多长时间?
教室面积有多大?
学校食堂有多大?
你家住房有多少平方米?
你所在城市有多少人口?
如何测量一张纸的厚度?
还可组织学生针对一周出版的某种报纸,讨论中间出现了哪些与数、数量、运算有关的数学问题,分别表述这些问题中关于数的意义作用,如何用数来解决这些具体问题等。
在初中,随着对数的认识领域的扩大以及数的认识的积累,可以引导学生在较复杂的数量关系和运算中提升数感。
2、符号意识:
符号对于数学来说是特有的。
它既是数学的语言,也是数学的工具,更是数学的方法。
数学符号的功能特性是多方面的:
它具有抽象性,这使得数学能够超越于数学对象的具体属性,而从形式化的角度进行逻辑推演,并一步步把数学引向深入;
它具有明确性,某一数学符号的意义一旦被赋予,它就在这确定的意义下被运用,不会含糊,不会产生歧义,从而带来数学极大的严谨性;
它具有可操作性,数学过程往往体现于数学符号之间的“运算”,针对这种“运算”的算法是形式化的,几乎是自动化的,不需要每次都从头做起。
此外数学符号还具有简略性和通用性等特点。
正因为如此,数学符号在数学发展中起着举足轻重的作用。
学生在数学学习过程中,将无时无刻不与符号打交道,对数学符号的语言、工具、方法的功能和上述特性的认识事实上构成了学生数学学习的重要内容,学生掌握数学符号、运用数学符号能力的培养也成为重要的教学目标。
(1)什么是符号意识。
从一般意义上说,所谓符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代码。
数字、字母、图形、关系式等构成了数学的符号系统。
符号意识(Sym-bolsense)是学习者在感知、认识、运用数学符号方面所作出的一种主动性反应,它也是一种积极的心理倾向。
数学符号最本质的意义就在于它是数学抽象的结果。
如在数与代数中,数来源于对数量本质(多与少)的抽象,而数字就成为能够以大小排序的符号。
数学符号不仅是一种表示方式,更是与数学概念、命题等具体内容相关的、体现数学基本思想的核心概念,发展学生的符号意识是数学教学的重要目标。
(2)《课程标准》中对符号意识的表述。
此次修订,将原来的“符号感”改为了“符号意识”,这说明其意义与课程目标的价值取向和数学符号的本质意义要求更加吻合。
在数学学习中,无论是概念、命题学习还是问题解决,都涉及用符号去表征数学对象,并用符号去进行运算、推理,得到一般性的结论。
《课程标准》对符号意识的表述有以下几层意思。
第一,能够理解并且运用符号表示数、数量关系和变化规律,即能够理解符号所表示的意义与能够运用符号去表示数学对象(数、数量关系和变化规律等)。
如“+、一、×
、÷
”分别表示特定的运算意义,同时,对数学符号不仅要“懂”,还要会“用”。
即运用符号表达数学对象是“用”符号的重要方面,这里的数学对象主要指数、数量关系和变化规律及它们在各个学段的要求。
如用数字符号表示现实中的多少,用单一的运算符号表示数字运算关系,而关系式、表格、图象等又都是表达数量关系和变化规律的符号工具。
第二,知道使用符号可以进行运算和推理,得到的结论具有一般性。
这一要求的核心是基于运算和推理的符号“操作”意识,要求学生在各学段的学习中,要加强他们在逻辑法则下使用符号进行运算、推理的训练等,如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等。
第三,建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
数学表达是学生在解决具体问题时必须采用的方式,数学表达实质上就是以数学符号作为媒介的一种语言表达,通过培养学生的符号意识,发展学生的数学表达能力已成为当今课堂关注的目标。
而发展符号意识最重要的是运用符号进行数学思考,这种思考是数学抽象、数学推理、数学模型等基本数学思想的集中反映,是最具数学特色的思维方式。
(3)如何培养学生的符号意识。
一是在各学段紧密结合概念、命题、公式的教学,培养学生的符号意识。
因为概念、命题、公式是数学课程内容中的重要组成部分,它们又是数学教学的重点,又和数学符号的表达和使用密切相关。
因此,《课程标准》在学段目标和各学段内容标准中都提出了具体要求。
如:
“能使用符号和词语描述万以内数的大小”“认识小括号”(第一学段);
“认识中括号”“在具体情境中能用字母表示数”“结合简单的时间情境,了解等量关系,并能用字母表示”“能用方程表示简单情境中的等量关系”(第二学段);
二是结合现实情境培养学生的符号意识。
这里一方面,尽可能通过实际问题或现实情境的创设,引导、帮助学生理解符号以及表达式、关系式的意义,或引导学生对现实情境问题进行符号的抽象和表达;
另一方面,对某一特定的符号表达式启发学生进行多样化的现实意义的填充和解读。
这种建立在现实情境与符号化之间的双向过程,有利于增强学生数学表达和数学符号思维的变通性、迁移性和灵活性。
三是在数学问题解决过程中发展学生的符号意识。
如引导学生经历发现问题,提出问题(实际上需要运用符号抽象和表达问题)、分析问题、解决问题(实际上是使用符号进行运算、推理和数学思考)的全过程,在这一过程中积累运用符号的活动经验,更好地感悟符号所蕴涵的数学思想本质,逐步促进学生符号意识得到提高。
作为一种语言,数学语言有以下三种,一种是数学的普通话,即通常所说的自然语言或文字语言,一种是图形语言,这是数学里独特的东西。
另外就是符号语言,作为语言,符号语言是数学里一个完整的东西,某种意义上是一个体系,所以从这个角度来说,提升符号意识,对于学习数学,是非常重要的。
因为符号可以用来简洁、准确的表达,交流起来就方便。
3、空间观念
(1)什么是空间观念。
关于空间观念的含义,也可理解为空间想象力。
林崇德在1991年指出,中学生的空间想象包括对平面几何图形和立体几何图形的运动、变换和位置关系的认识,以及数形结合、代数问题的几何解释等。
空间想象力主要体现在对诸如一维、二维、三维空间中方向、方位、形状、大小等空间概念的理解水平及其几何特征的内化水平上,体现在对简单形体空间位置的想象和变换(平移、旋转以及分割、割补和叠合等)上,以及对抽象的数学式子(算式或代数式等)给予具体几何意义的想象解释或表象能力上。
曹才翰提出,空间想象力就是以现实世界为背景,对几何表象进行加工改造,创造新的形象的能力。
同时他指出,空间想象力对初中生来说要求太高了,所以《课程标准》中只提出培养学生的空间观念。
(2)培养学生空间观念的意义。
数学家和数学教育研究者对于建立培养学生的空间观念都有相关的描述。
数学家阿蒂亚认为,几何是数学中视觉思维占主导地位,而代数则是数学中有序思维占主导地位。
荷兰数学家、数学教育家弗莱登塔尔指出,几何是对空间的把握——这个空间是学生生活、呼吸和运动的空间。
在这个空间里,学生必须学会去了解、探索、征服,从而能更好地在其中生活、呼吸和运动。
全美数学教师理事会在《美国学校数学课程与评价标准》提到,几何有助于我们用一种有序的方式表示和描述我们生活的现实世界,将帮助学生描述和弄清世界的意义。
对于学生来说,发展牢固的空间观念,掌握几何的概念和语言,可以较好地为学习数和度量概念做准备,还可以促进其他数学课程的进一步学习。
(3)《课程标准》中关于空间观念所包含的内容。
《课程标准》是从如下五方面进行刻画描述的:
一是由形状简单的实物抽取出空间图形;
二是由空间图形反映出实物;
三是由复杂图形中分解出简单的、基本的图形;
四是由基本的图形中寻找出基本元素及其关系;
五是由文字或符号作出或画出图形。
这几方面的描述,是在义务教育阶段对学生在图形与几何内容的学习所要达成的目标。
这样的目标达成的过程是一个包括观察、想象、比较、综合、抽象分析的过程,它贯穿在图形与几何学习的全过程中,无论是图形的认识,图形的运动,图形与位置等都承载着建立,培养学生空间观念的任务。
(4)如何培养学生的空间观念。
空间观念的培养是一个长期的经验积累的过程,全美数学教师理事会在1989年指出,发展学生的空间观念,学生必须具有许多经验。
如几何关系的要点,在空间中物体的方向、方位和透视观点;
相关的形状和图形与实物的大小,以及如何通过改变大小来改变形状。
这些经验要依靠学生以下几个方面的能力,如会运用像“上面”“下面”和“后面”等一些词语,画出一个图形旋转90°
或180°
以后的图形,作图、折叠,让学生想象、绘制和比较放在不同位置上的图形等,这些活动将有助于培养他们的空间观念。
事实上,在图形与几何课程的学习中,有很多的素材和机会培养学生的空间观念的,主要有以下几方面。
第一,现实问题情境和学生经验是发展空间观念的基础。
这在《课程标准》第一、第二学段的“图形与运动”“图形与位置”中的大部分内容的学习,都是培养学生空间观念的很好素材,都从不同方向观察物体、运用基本图形拼图及基本几何体的展开图等,也都是旨在建立培养学生空间观念的课程内容。
教师要在教学中结合学生们熟悉的现实问题情境建立培养学生的空间观念。
第二,利用多种途径建立培养学生的空间观念。
生活经验的回忆与再现、实物观察与描述、拼摆与画图、折纸与展开、分析与推理等,都是建立培养学生空间观念的有效途径。
教学中教师应结合教学内容恰当地安排学习的活动,创造条件使学生有机会从事上述的活动来建立培养空间观念。
第三,在学生的思考、想象过程中建立培养空间观念。
因为学生空间观念的培养不是一蹴而就的,它需要不断的经验积累和丰富的想象力,因此,教学中教师要为学生提供足够的时间和空间去观察和想象、操作和分析。
4、几何观念
(1)什么是几何直观。
顾名思义,几何直观所指有两点:
一是几何,在这里几何是指图形;
二是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来。
几何直观就是依托、利用图形进行数学的思考和想象。
这次课程改革中,强调几何变换不仅是内容上的变化,也是设计几何课程指导思想上变化,这将是几何课程发展的方向。
让图形“动起来”,在“运动或变换”中来研究、揭示、学习图形的性质,这样,一方面,加深了对图形性质的本质认识;
另一方面,对几何直观能力也是一种提升。
由此可以看到,在义务教育阶段对几何直观的学习和研究,能把复杂的数学问题变得简明、形象,能帮助学生直观地理解数学,从而培养学生的几何直观。
(2)《课程标准》中关于几何直观所包含的内容。
几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
正如前面所指出的,图形有助于发现、描述问题,有助于探索、发现解决问题的思路,也有助于我们理解和记忆得到的结果,学会用图形思考、想象问题能使我们更好地感知数学、领悟数学。
因此,在义务教育阶段教学和指导学生学习时,认识和理解几何直观,能帮助学生直观地理解数学,在整个数学