生物化学习题Word文件下载.doc

上传人:wj 文档编号:4643262 上传时间:2023-05-03 格式:DOC 页数:7 大小:69.50KB
下载 相关 举报
生物化学习题Word文件下载.doc_第1页
第1页 / 共7页
生物化学习题Word文件下载.doc_第2页
第2页 / 共7页
生物化学习题Word文件下载.doc_第3页
第3页 / 共7页
生物化学习题Word文件下载.doc_第4页
第4页 / 共7页
生物化学习题Word文件下载.doc_第5页
第5页 / 共7页
生物化学习题Word文件下载.doc_第6页
第6页 / 共7页
生物化学习题Word文件下载.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

生物化学习题Word文件下载.doc

《生物化学习题Word文件下载.doc》由会员分享,可在线阅读,更多相关《生物化学习题Word文件下载.doc(7页珍藏版)》请在冰点文库上搜索。

生物化学习题Word文件下载.doc

(1)脲酶(只催化尿素NH2CONH2的水解,但不能作用于NH2CONHCH3);

(2)¦

Â

-D-葡萄糖苷酶(只作用于¦

-D-葡萄糖形成的各种糖甘,但不能作用于其他的糖苷,例如果糖苷);

(3)酯酶(作用于R1COOR2的水解反应);

(4)L-氨基酸氧化酶(只作用于L-氨基酸,而不能作用于D-氨基酸);

(5)反丁烯二酸水合酶[只作用于反丁烯二酸(延胡索酸),而不能作用于顺丁烯二酸(马来酸)];

(6)甘油激酶(催化甘油磷酸化,生成甘油-1-磷酸)。

9.

(1)为什么某些肠道寄生虫如蛔虫在体内不会被消化道内的胃蛋白酶、胰蛋白酶消化?

(2)为什么蚕豆必须煮熟后食用,否则容易引起不适?

10.有时别构酶的活性可以被低浓度的竞争性抑制剂激活,请解释?

11.在很多酶的活性中心均有His残基参与,请解释?

12.将下列化学名称与B族维生素及其辅酶形式相匹配?

(A)泛酸;

(B)烟酸;

(C)叶酸;

(D)硫胺素;

(E)核黄素;

(F)吡哆素;

(G)生物素。

(1)B1;

(2)B2;

(3)B3;

(4)B5;

(5)B6;

(6)B7;

(7)B11;

(8)B12。

(Ⅰ)FMN;

(Ⅱ)FAD;

(Ⅲ)NAD+;

(Ⅳ)NADP+;

(Ⅴ)CoA;

(Ⅵ)PLP;

(Ⅶ)PMP;

(Ⅷ)FH2,FH4;

(Ⅸ)TPP。

13.常见的呼吸链电子传递抑制剂有哪些?

它们的作用机制是什么?

14.氰化物为什么能引起细胞窒息死亡?

其解救机理是什么?

15.在磷酸戊糖途径中生成的NADPH,如果不去参加合成代谢,那么它将如何进一步氧化?

16.在体内ATP有哪些生理作用?

17.有人曾经考虑过使用解偶联剂如2,4-二硝基苯酚(DNP)作为减肥药,但很快就被放弃使用,为什么?

18.氧化作用和磷酸化作用是怎样偶联的?

19.为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共通路?

20.糖代谢和脂代谢是通过那些反应联系起来的?

21.磷酸戊糖途径有什么生理意义?

22.糖分解代谢可按EMP-TCA途径进行,也可按磷酸戊糖途径,决定因素是什么?

23.琥珀酰CoA的代谢来源与去路有哪些

24.在脂肪酸合成中,乙酰CoA.羧化酶起什么作用?

25.什么是尿素循环,有何生物学意义?

26.嘌呤核苷酸分子中各原子的来源及合成特点怎样?

27.嘧啶核苷酸分子中各原子的来源及合成特点怎样?

28.DNA复制的基本规律?

29.简述DNA复制的过程?

30.简述原核细胞和真核细胞的RNA聚合酶有何不同?

31.简述RNA转录的过程?

32.什么m7GTP能够抑制真核细胞的蛋白质合成,但不抑制原核细胞的蛋白质合成?

相反人工合成的SD序列能够抑制原核细胞的蛋白质合成,但不抑制真核细胞的蛋白质合成?

33.遗传密码如何编码?

有哪些基本特性?

34.简述tRNA在蛋白质的生物合成中是如何起作用的?

35.mRNA遗传密码排列顺序翻译成多肽链的氨基酸排列顺序,保证准确翻译的关键是什么?

1.答:

(a)异硫氢酸苯酯;

(b)丹黄酰氯;

(c)脲、β-巯基乙醇;

(d)胰凝乳蛋白酶;

(e)CNBr;

(f)胰蛋白酶。

2.答:

(1)可能在7位和19位打弯,因为脯氨酸常出现在打弯处。

(2)13位和24位的半胱氨酸可形成二硫键。

(3)分布在外表面的为极性和带电荷的残基:

Asp、Gln和Lys;

分布在内部的是非极性的氨基酸残基:

Try、Leu和Val;

Thr尽管有极性,但疏水性也很强,因此,它出现在外表面和内部的可能性都有。

3.答:

按Watson-Crick模型,DNA的结构特点有:

两条反相平行的多核苷酸链围绕同一中心轴互绕;

碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;

碱基平面与轴垂直,糖环平面则与轴平行。

两条链皆为右手螺旋;

双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间

的夹角是36�,每对螺旋由10对碱基组成;

碱基按A=T,G¡

Ô

C配对互补,彼此以氢键相连系。

维持DNA结构稳定的力量主要是碱基堆积力;

双螺旋结构表面有两条螺形凹沟,一大一小。

4.答:

在稳定的DNA双螺旋中,碱基堆积力和碱基配对氢键在维系分子立体结构方面起主要作用。

5.答:

tRNA的二级结构为三叶草结构。

其结构特征为:

(1)tRNA的二级结构由四臂、四环组成。

已配对的片断称为臂,未配对的片断称为环。

(2)叶柄是氨基酸臂。

其上含有CCA-OH3’,此结构是接受氨基酸的位置。

(3)氨基酸臂对面是反密码子环。

在它的中部含有三个相邻碱基组成的反密码子可与mRNA上的密码子相互识别。

(4)左环是二氢尿嘧啶环(D环),它与氨基酰-tRNA合成酶的结合有关。

(5)右环是假尿嘧啶环(TψC环),它与核糖体的结合有关。

(6)在反密码子与假尿嘧啶环之间的是可变环,它的大小决定着tRNA分子大小

6.答:

(1)酶能被酸、碱及蛋白酶水解,水解的最终产物都是氨基酸,证明酶是由氨基酸组成的。

(2)酶具有蛋白质所具有的颜色反应,如双缩脲反应、茚三酮反应、米伦反应、乙醛酸反应。

(3)一切能使蛋白质变性的因素,如热、酸碱、紫外线等,同样可以使酶变性失活。

(4)酶同样具有蛋白质所具有的大分子性质,如不能通过半透膜、可以电泳等。

(5)酶同其他蛋白质一样是两性电解质,并有一定的等电点。

总之,酶是由氨基酸组成的,与其他已知的蛋白质有着相同的理化性质,所以酶的化学本质是蛋白质。

7.答:

(1)共性:

用量少而催化效率高;

仅能改变化学反应的速度,不改变化学反应的平衡点,酶本身在化学反应前后也不改变;

可降低化学反应的活化能。

(2)个性:

酶作为生物催化剂的特点是催化效率更高,具有高度的专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。

8.答:

(1)绝对专一性;

(2)相对专一性(族专一性);

(3)相对专一性(键专一性);

(4)立体专一性(旋光异构专一性);

(5)立体专一性(顺反异构专一性);

(6)立体专一性(识别从化学角度看完全对称的两个基团)。

9.答:

(1)一些肠道寄生虫如蛔虫等可以产生胃蛋白酶和胰蛋白酶的抑制剂,使它在动物体内不致被消化。

(2)蚕豆等某些植物种子含有胰蛋白酶抑制剂,煮熟后胰蛋白酶抑制剂被破坏,否则食用后抑制胰蛋白酶活性,影响消化,引起不适。

10.答:

底物与别构酶的结合,可以促进随后的底物分子与酶的结合,同样竞争性抑制剂与酶的底物结合位点结合,也可以促进底物分子与酶的其它亚基的进一步结合,因此低浓度的抑制剂可以激活某些别构酶。

11.答:

酶蛋白分子中组氨酸的侧链咪唑基pK值为6.0~7.0,在生理条件下,一半解离,一半不解离,因此既可以作为质子供体(不解离部分),又可以作为质子受体(解离部分),既是酸,又是碱,可以作为广义酸碱共同催化反应,因此常参与构成酶的活性中心。

12.答:

(A)―(3)―(Ⅴ);

(B)―(4)―(Ⅲ),(Ⅳ);

(C)―(7)―(Ⅷ);

(D)―

(1)―(Ⅸ);

(E)―

(2)―(Ⅰ),(Ⅱ);

(F)―(5)―(Ⅵ),(Ⅶ);

(G)―(6)

13.答:

常见的呼吸链电子传递抑制剂有:

(1)鱼藤酮(rotenone)、阿米妥(amytal)、以及杀粉蝶菌素(piericidin-A),它们的作用是阻断电子由NADH向辅酶Q的传递。

鱼藤酮是从热带植物(Derriselliptiee)的根中提取出来的化合物,它能和NADH脱氢酶牢固结合,因而能阻断呼吸链的电子传递。

鱼藤酮对黄素蛋白不起作用,所以鱼藤酮可以用来鉴别NADH呼吸链与FADH2呼吸链。

阿米妥的作用与鱼藤酮相似,但作用较弱,可用作麻醉药。

杀粉蝶菌素A是辅酶Q的结构类似物,由此可以与辅酶Q相竞争,从而抑制电子传递。

(2)抗霉素A(antimycinA)是从链霉菌分离出的抗菌素,它抑制电子从细胞色素b到细胞色素c1的传递作用。

(3)氰化物、一氧化碳、叠氮化合物及硫化氢可以阻断电子细胞色素aa3向氧的传递作用,这也就是氰化物及一氧化碳中毒的原因。

14.答:

氰化钾的毒性是因为它进入人体内时,CNˉ的N原子含有孤对电子能够与细胞色素aa3的氧化形式高价铁Fe3+以配位键结合成氰化高铁细胞色素aa3,使其失去传递电子的能力,阻断了电子传递给O2,结果呼吸链中断,细胞因窒息而死亡。

而亚硝酸在体内可以将血红蛋白的血红素辅基上的Fe2+氧化为Fe3+。

部分血红蛋白的血红素辅基上的Fe2+被氧化成Fe3+高铁血红蛋白,且含量达到20%-30%时,高铁血红蛋白(Fe3+)也可以和氰化钾结合,这就竞争性抑制了氰化钾与细胞色素aa3的结合,从而使细胞色素aa3的活力恢复;

但生成的氰化高铁血红蛋白在数分钟后又能逐渐解离而放出CNˉ。

因此,如果在服用亚硝酸的同时,服用硫代硫酸钠,则CNˉ可被转变为无毒的SCNˉ,此硫氰化物再经肾脏随尿排出体外。

15.答:

葡萄糖的磷酸戊糖途径是在胞液中进行的,生成的NADPH具有许多重要的生理功能,其中最重要的是作为合成代谢的供氢体。

如果不去参加合成代谢,那么它将参加线粒体的呼吸链进行氧化,最终与氧结合生成水。

但是线粒体内膜不允许NADPH和NADH通过,胞液中NADPH所携带的氢是通过转氢酶催化过程进人线粒体的:

(1)NADPH+NAD+→NADP十+NADH

(2)NADH所携带的氢通过两种穿梭作用进人线粒体进行氧化:

aα-磷酸甘油穿梭作用;

进人线粒体后生成FADH2。

b苹果酸穿梭作用;

进人线粒体后生成NADH。

16.答:

ATP在体内有许多重要的生理作用:

(1)是机体能量的暂时贮存形式:

在生物氧化中,ADP能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP的方式贮存起来,因此ATP是生物氧化中能量的暂时贮存形式。

(2)是机体其它能量形式的来源:

ATP分子内所含有的高能键可转化成其它能量形式,以维持机体的正常生理机能,例如可转化成机械能、生物电能、热能、渗透能、化学合成能等。

体内某些合成反应不一定都直接利用ATP供能,而以其他三磷酸核苷作为能量的直接来源。

如糖原合成需UTP供能;

磷脂合成需CTP供能;

蛋白质合成需GTP供能。

这些三磷酸核苷分子中的高能磷酸键并不是在生物氧化过程中直接生成的,而是来源于ATP。

(3)可生成cAMP参与激素作用:

ATP在细胞膜上的腺苷酸环化酶催化下,可生成cAMP,作为许多肽类激素在细胞内体现生理效应的第二信使。

17.答:

DNP作为一种解偶联剂,能够破坏线粒体内膜两侧的质子梯度,使质子梯度转变为热能,而不是ATP。

在解偶联状态下,电子传递过程完全是自由进行的,底物失去控制地被快速氧化,细胞的代谢速率将大幅度提高。

这些将导致机体组织消耗其存在的能源形式,如糖原和脂肪,因此有减肥的功效。

但是由于这种消耗失去控制的消耗,同时消耗过程中过分产热,这势必会给机体带来强烈的副作用。

18.答:

目前解释氧化作用和磷酸化作用如何偶联的假说有三个,即化学偶联假说、结构偶联假说与化学渗透假说。

其中化学渗透假说得到较普遍的公认。

该假说的主要内容是:

(1)线粒体内膜是封闭的对质子不通透的完整内膜系统。

(2)电子传递链中的氢传递体和电子传递体是交叉排列,氢传递体有质子(H+)泵的作用,在电子传递过程中不断地将质子(H+)从内膜内侧基质中泵到内膜外侧。

(3)质子泵出后,不能自由通过内膜回到内膜内侧,这就形成内膜外侧质子(H+)浓度高于内侧,使膜内带负电荷,膜外带正电荷,因而也就形成了两侧质子浓度梯度和跨膜电位梯度。

这两种跨膜梯度是电子传递所产生的电化学电势,是质子回到膜内的动力,称质子移动力或质子动力势。

(4)一对电子(2eˉ)从NADH传递到O2的过程中共有3对H十从膜内转移到膜外。

复合物Ⅰ、Ⅲ、Ⅳ着质子泵的作用,这与氧化磷酸化的三个偶联部位一致,每次泵出2个H十。

(5)质子移动力是质子返回膜内的动力,是ADP磷酸化成ATP的能量所在,在质子移动力驱使下,质子(H+)通过F1F0-ATP合酶回到膜内,同时ADP磷酸化合戚ATP。

19.答:

(1)三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。

(2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。

(3)脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化

产生乙酰CoA可进入三羧酸循环氧化。

(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。

所以,三羧酸循环是三大物质代谢共同通路。

20.答:

(1)糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料。

(2)有氧氧化过程中产生的乙酰CoA是脂肪酸和酮体的合成原料。

(3)脂肪酸分解产生的乙酰CoA最终进入三羧酸循环氧化。

(4)酮体氧化产生的乙酰CoA最终进入三羧酸循环氧化。

(5)甘油经磷酸甘油激酶作用后,转变为磷酸二羟丙酮进入糖代谢。

21.答:

(1)产生的5-磷酸核糖是生成核糖,多种核苷酸,核苷酸辅酶和核酸的原料。

(2)生成的NADPH+H+是脂肪酸合成等许多反应的供氢体。

(3)此途径产生的4-磷酸赤藓糖与3-磷酸甘油酸可以可成莽草酸,进而转变为芳香族氨基酸。

(4)途径产生的NADPH+H+可转变为NADH+H+,进一步氧化产生ATP,提供部分能量。

22.答:

糖分解代谢可按EMP-TCA途径进行,也可按磷酸戊糖途径,决定因素是能荷水平,能荷低时糖分解按EMP-TCA途径进行,能荷高时可按磷酸戊糖途径

23.答:

(1)琥珀酰CoA主要来自糖代谢,也来自长链脂肪酸的ω-氧化。

奇数碳原子脂肪酸,通过氧化除生成乙酰CoA,后者进一步转变成琥珀酰CoA。

此外,蛋氨酸,苏氨酸以及缬氨酸和异亮氨酸在降解代谢中也生成琥珀酰CoA。

(2)琥珀酰CoA的主要代谢去路是通过柠檬酸循环彻底氧化成CO2和H2O。

琥珀酰CoA在肝外组织,在琥珀酸乙酰乙酰CoA转移酶催化下,可将辅酶A转移给乙酰乙酸,本身成为琥珀酸。

此外,琥珀酰CoA与甘氨酸一起生成δ-氨基-γ-酮戊酸(ALA),参与血红素的合成

24.答:

在饱和脂肪酸的生物合成中,脂肪酸碳链的延长需要丙二酸单酰CoA。

乙酰CoA羧化酶的作用就是催化乙酰CoA和HCO3-合成丙二酸单酰CoA,为脂肪酸合成提供三碳化合物。

乙酰CoA羧化酶催化反应(略)。

乙酰CoA羧化酶是脂肪酸合成反应中的一种限速调节酶,它受柠檬酸的激活,但受棕榈酸的反馈抑制。

25.答:

(1)尿素循环:

尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨经过一系列反应转变成尿素的过程。

有解除氨毒害的作用

(2)生物学意义:

26.答:

(1)各原子的来源:

N1-天冬氨酸;

C2和C8-甲酸盐;

N7、C4和C5-甘氨酸;

C6-二氧化碳;

N3和N9-谷氨酰胺;

核糖-磷酸戊糖途径的5′磷酸核糖

(2)合成特点:

5′磷酸核糖开始→5′磷酸核糖焦磷酸(PRPP)→5′磷酸核糖胺(N9)→甘氨酰胺核苷酸(C4、C5、N7)→甲酰甘氨酰胺核苷酸(C8)→5′氨基咪唑核苷酸(C3)→5′氨基咪唑-4-羧酸核苷酸(C6)5′氨基咪唑甲酰胺核苷酸(N1)→次黄嘌呤核苷酸(C2)。

27.答:

N1、C4、C5、C6-天冬氨酸;

C2-二氧化碳;

N3-氨;

核糖-磷酸戊糖途径的

5′磷酸核糖。

氨甲酰磷酸+天冬氨酸→乳清酸

乳清酸+PRPP→乳清酸核苷-5′-磷酸→尿苷酸

28.答:

(1)复制过程是半保留的。

(2)细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DNA复制则可以在多个不同部位起始。

(3)复制可以是单向的或是双向的,以双向复制较为常见,两个方向复制的速度不一定相同。

(4)两条DNA链合成的方向均是从5�向3�方向进行的。

(5)复制的大部分都是半不连续的,即其中一条领头链是相对连续的,其他随后链则是不连续的。

(6)各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并用DNA填补余下的空隙。

29.答:

DNA复制从特定位点开始,可以单向或双向进行,但是以双向复制为主。

由于DNA双链的合成延伸均为5′→3′的方向,因此复制是以半不连续的方式进行,可以概括为:

双链的解开;

RNA引物的合成;

DNA链的延长;

切除RNA引物,填补缺口,连接相邻的DNA片段。

(1)双链的解开在DNA的复制原点,双股螺旋解开,成单链状态,形成复制叉,分别作为模板,各自合成其互补链。

在复制叉上结合着各种各样与复制有关的酶和辅助因子。

(2)RNA引物的合成引发体在复制叉上移动,识别合成的起始点,引发RNA引物的合成。

移动和引发均需要由ATP提供能量。

以DNA为模板按5′→3′的方向,合成一段引物RNA链。

引物长度约为几个至10个核苷酸。

在引物的5′端含3个磷酸残基,3′端为游离的羟基。

(3)DNA链的延长当RNA引物合成之后,在DNA聚合酶Ⅲ的催化下,以四种脱氧核糖核苷5′-三磷酸为底物,在RNA引物的3′端以磷酸二酯键连接上脱氧核糖核苷酸并释放出PPi。

DNA链的合成是以两条亲代DNA链为模板,按碱基配对原则进行复制的。

亲代DNA的双股链呈反向平行,一条链是5′→3′方向,另一条链是3′→5′方向。

在一个复制叉内两条链的复制方向不同,所以新合成的二条子链极性也正好相反。

由于迄今为止还没有发现一种DNA聚合酶能按3′→5′方向延伸,因此子链中有一条链沿着亲代DNA单链的3′→5′方向(亦即新合成的DNA沿5′→3′方向)不断延长。

(4)切除引物,填补缺口,连接修复当新形成的冈崎片段延长至一定长度,其3′-OH端与前面一条老片断的5′断接近时,在DNA聚合酶Ⅰ的作用下,在引物RNA与DNA片段的连接处切去RNA引物后留下的空隙,由DNA聚合酶Ⅰ催化合成一段DNA填补上;

在DNA连接酶的作用下,连接相邻的DNA链;

修复掺入DNA链的错配碱基。

这样以两条亲代DNA链为模板,就形成了两个DNA双股螺旋分子。

每个分子中一条链来自亲代DNA,另一条链则是新合成的。

30.答:

(1)原核细胞大肠杆菌的RNA聚合酶研究的较深入。

这个酶的全酶由5种亚基

(α2ββ¡

ä

δω)组成,还含有2个Zn原子。

在RNA合成起始之后,δ因子便与全酶分离。

不含δ因子的酶仍有催化活性,称为核心酶。

δ亚基具有与启动子结合的功能,β亚基催化效率很低,而且可以利用别的DNA的任何部位作模板合成RNA。

加入δ因子后,则具有了选择起始部位的作用,δ因子可能与核心酶结合,改变其构象,从而使它能特异地识别DNA模板链上的起始信号。

(2)真核细胞的细胞核内有RNA聚合酶I、II和III,通常由4~6种亚基组成,并含有Zn2+。

RNA聚合酶I存在于核仁中,主要催化rRNA前体的转录。

RNA聚合酶Ⅱ和Ⅲ存在于核质中,分别催化mRNA前体和小分子量RNA的转录。

此外线粒体和叶绿体也含有RNA聚合酶,其特性类似原核细胞的RNA聚合酶。

31.答:

RNA转录过程为起始位点的识别、起始、延伸、终止。

(1)起始位点的识别RNA聚合酶先与DNA模板上的特殊启动子部位结合,σ因子起着识别DNA分子上的起始信号的作用。

在σ亚基作用下帮助全酶迅速找到启动子,并与之结合生成较松弛的封闭型启动子复合物。

这时酶与DNA外部结合,识别部位大约在启动子的-35位点处。

接着是DNA构象改变活化,得到开放型的启动子复合物,此时酶与启动子紧密结合,在-10位点处解开DNA双链,识别其中的模板链。

由于该部位富含A-T碱基对,故有利于DNA解链。

开放型复合物一旦形成,DNA就继续解链,酶移动到起始位点。

(2)起始留在起始位点的全酶结合第一个核苷三磷酸。

第一个核苷三磷酸常是GTP或ATP。

形成的启动子、全酶和核苷三磷酸复合物称为三元起始复合物,第一个核苷酸掺入的位置称为转录起始点。

这时σ亚基被释放脱离核心酶。

(3)延伸从起始到延伸的转变过程,包括σ因子由缔合向解离的转变。

DNA分子和酶分子发生构象的变化,核心酶与DNA的结合松弛,核心酶可沿模板移动,并按模板序列选择下一个核苷酸,将核苷三磷酸加到生长的RNA链的3′-OH端,催化形成磷酸二酯键。

转录延伸方向是沿DNA模板链的3′→5′方向

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2