李玉柱流体力学课后题答案.docx

上传人:b****3 文档编号:5072165 上传时间:2023-05-08 格式:DOCX 页数:22 大小:425.44KB
下载 相关 举报
李玉柱流体力学课后题答案.docx_第1页
第1页 / 共22页
李玉柱流体力学课后题答案.docx_第2页
第2页 / 共22页
李玉柱流体力学课后题答案.docx_第3页
第3页 / 共22页
李玉柱流体力学课后题答案.docx_第4页
第4页 / 共22页
李玉柱流体力学课后题答案.docx_第5页
第5页 / 共22页
李玉柱流体力学课后题答案.docx_第6页
第6页 / 共22页
李玉柱流体力学课后题答案.docx_第7页
第7页 / 共22页
李玉柱流体力学课后题答案.docx_第8页
第8页 / 共22页
李玉柱流体力学课后题答案.docx_第9页
第9页 / 共22页
李玉柱流体力学课后题答案.docx_第10页
第10页 / 共22页
李玉柱流体力学课后题答案.docx_第11页
第11页 / 共22页
李玉柱流体力学课后题答案.docx_第12页
第12页 / 共22页
李玉柱流体力学课后题答案.docx_第13页
第13页 / 共22页
李玉柱流体力学课后题答案.docx_第14页
第14页 / 共22页
李玉柱流体力学课后题答案.docx_第15页
第15页 / 共22页
李玉柱流体力学课后题答案.docx_第16页
第16页 / 共22页
李玉柱流体力学课后题答案.docx_第17页
第17页 / 共22页
李玉柱流体力学课后题答案.docx_第18页
第18页 / 共22页
李玉柱流体力学课后题答案.docx_第19页
第19页 / 共22页
李玉柱流体力学课后题答案.docx_第20页
第20页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

李玉柱流体力学课后题答案.docx

《李玉柱流体力学课后题答案.docx》由会员分享,可在线阅读,更多相关《李玉柱流体力学课后题答案.docx(22页珍藏版)》请在冰点文库上搜索。

李玉柱流体力学课后题答案.docx

李玉柱流体力学课后题答案

第四章流体动力学基础

4-1设固定平■行平板间液体的断面流速分布为

uB/2-y

umax

1/7

i,y"

B/2

总流的动能修正系数为何值?

512BB

解:

v=—「AUdA=—[2—

AB0

1.0—A—dAu=u

AAvA

-斯以

4-2如图示一股水流自狭长的缝中水平射出,其厚度&=0.03m,平均流速

V0=8m/s,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求

(1)在倾斜角8=45处的平均流速V;

(2)该处的水股厚度6。

解:

(1)由题意可知:

在45度水流处,其水平■分速度仍为8m/s,由勾股定理

可得:

V=—=11.31m/s

sin45

(2)水股厚度由流量守包可得:

60V0D0=5VD,由丁缝狭长,所以两处厚

度近似相等,所以6=%V°=00^8=0.021m。

V11.31

4-3如图所示管路,出口接一收缩管嘴,水流射人大气的速度V2=20m/s,管径d1=0.1m,管嘴出口直径d2=0.05m,压力表断面至出口断面高差H=5m,两断面间的水头损失为0.5(V12/2g)。

试求此时压力表的读数。

场4-3图

解:

取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的包定总流能量方程得:

22

V1PiV2p2

U二7习Fz2+hw,

2gg:

2gg:

由连续性方程A|V1=A2V2可得1-1断面流速V1=5m/s,

由上述两个方程可得压力表的读数(相对压强):

R-P2=也一V1+弓_"hWjgP,

\、2gJ

上式计算结果为:

2.48at。

所以,压力表的读数为2.48at。

4-4水轮机的圆锥形尾水管如图示。

已知A—A断面的直径dA=0.6m,流速

Va=6m/s,B-B断面的直径dB=0.9m,由A到B水头损失hW=0.15(V;/2g)。

求⑴当z=

水柱高度时,

5m时A-A断面处的真空度;

(2)当A-A断面处的允许真空度为5m

A—A断面的最高位置ZA,maxo

解:

(1)

可得A-A

取A-A和B-B包围的空间为控制体,对其列伯努利方程:

22

土座堕如ZBhw

2gg,:

A2gg,:

%w

断面处的真空度

―fd.V

由连续性万程AaVa=AbVb可得B-B断面流速VB=VA虫=2.67m/s,

所以A-A断面处真空度为6.42m。

2..2

(2)由伯努利方程J+X+ZAH^+^+ZB+hw

2gg「2gg「

22

可得A一A断面处的真空度:

毕-牛=土-鱼-Za+zb+兄:

g:

g2g2g

将允许真空度悟—*]=5.0m代入上式,可得:

ZA,max=3.80m

4-5水箱中的水从一扩散短管流到大气中,如图示。

若直径di=100mm,该处绝对压强Pabs=0.5at,而直径d2=l50mm,求作用水头H(水头损失可以忽略不

计)。

解:

取扩散短管收缩段为截面1-1,扩张段为截面2-2,为两截面之间包围

的空间为控制体,对其列出连续方程:

-d12V^-d22V2

44

对水箱自由液面和两截面列出伯努利方程:

222

PaVPabsMP2V2

■■-H——

:

?

g2g『g2g『g2g

因为:

V=0,p2=pa,可得:

Vl=9,V2=4.96m/s

V24

所以

4-6一大水箱中的水通过一铅垂管与收缩管嘴流人大气中,如图。

直管直径d4=100mm,管嘴出口直径dB=50mm,若不计水头损失,求直管中A点的相对

强PA

解:

取A点处截面为截面A-A,B点处截面为截面B-B,对其列连续性方程:

22

—d2VA=—dBVB,可得:

44

分别对自由液面和截面A-A及截面B-B之间的控制体列出伯努利方程:

V2

自由液面和截面A-A之间的控制的伯努利方程:

5=%+&+0;

2g司

V

自由液面和截面B-B之I可的控制体的伯努利方程:

9=—

2g

可得:

VB=J2g乂9=13.28m/s,VA=3.32m/s,pA=4.44mH2O

4-7离心式通风机用集流器C从大气中吸入空气,如图示。

在直径d=200mm的圆截面管道部分接一根玻璃管,管的下端插入水槽中。

若玻璃管中的水面升高

H=150mm,求每秒钟所吸取的空气量Q。

空气的密度P=1.29kg/m

ft4-7图

解:

设通风机内的压强为p,根据静力学基本方程有:

P;?

wgH=Pa

V2pV12

对风机入口处和风机内部列伯努利方程:

—,其中V=0

2gag2g

所以,

Vl2g

—^^+§=0,Vi=47.7m/s

丁是,每秒钟所吸取的空气量为:

Q=AV1=1.5m3/s。

4-8水平管路的过水流量Q=2.5L/s,如图示。

管路收缩段由直径di=50mm收缩成d2=25mm。

相对压强p1=0.1at,两断面问水头损失可忽略不计。

问收缩断面上的水管能将容器内的水吸出多大的高度h?

解:

根据连续方程:

Q=AV[=A2V2=2.5L/s可得:

乂=1.273门/s

V2=4"=5.09m/s

22

对截面1和截面2歹0伯努利方程:

2~

;g2g」g2g

可求得:

P2=-2393Pa

由P2=Pgh,所以h=0.24m。

4-9图示一矩形断面渠道,宽度B=2.7m。

河床某处有一高度0.3m的铅直升坎,升坎上、下游段均为平底。

若升坎前的水深为1.8m,过升坎后水面降低0.12

m,水头损失hw为尾渠(即图中出口段)流速水头的一半,试求渠道所通过的流量

Q。

thhw2g

根据连续方程:

BHV1=BhV2,其中:

H=1.8m,h=1.68m。

所以有:

V1=0.77V2

解得:

V2=1.6m/s,V1=1.23m/s,Q=BHV〔=5.98m3/s。

4-10图示抽水机功率为P=14.7kW,效率为n=75%,将密度P°=900kg/m

的油从油库送入密闭油箱。

已知管道直径d=150mm,油的流量Q=0.14m3/s,抽水机进口B处真空表指示为-3m水柱高,假定自抽水机至油箱的水头损失为h=2.3m油柱高,问此时油箱内A点的压强为多少?

解:

设抽水机中心轴处为截面B-B,油箱液面处为截面A-A,其中间包围的空间为控制体。

1

由连续万程Q=-nd2V可得:

V=7.92m/s

4

对A截面和B截面列伯努利方程:

22

Va2PauuVb2PBp0.75

J——Hh=—■—

2g"g2g"g?

gQ

由抽水机进口B处真空表指示为-3m油柱高,可知=—3m,所以

\g

10

3

PB

么g

代入上面的伯努利方程可得:

Pa=13.188kPa。

4-11如图所示虹吸管,由河道A向渠道B引水,已知管径d=100mm,虹吸管断面中心点2高出河道水位z=2m,点1至点2的水头损失为hW1-2=10(V2/2g),点2至点3的水头损失hW2-3=2(V>2g),V表示管道的断面平■均流速。

若点2

的真空度限制在hv=7m以内,试问

(1)虹吸管的最大流量有无限制?

如有,应为多大?

(2)出水口到河道水面的高差h有无限制?

如有,应为多大?

解:

(1)对截面1—1和截面2—2歹0伯努利方程:

2_2_

2g『g2g『g

.Z+h心

-V210V2

其中:

Va=°二——++2^7,V<3m/s

2g2g

所以

提,*23.5L/s

4

(2)对A截面和B截面列伯努利方程:

£+旦+h=^+旦+hw1u+hw2n2g七2g:

gw1二心

4-12图示分流义管,断面1一1处的过流断面积Ai=0.1m2,高程zi=75m,流速Vi=3m/s,压强pi=98kPa;断面2—2处A2=0.05m2,zi=72m;断面3—3处Ai=0.08m2,zi=60m,p3=196kPa;断面1—1至2—2和3—3的水头损失分别为hwl-2=3m和hwl-3=5m。

试求

(1)断面2—2和3—3处的流速V和V3;

(2)断面2—2处的压强p2o

v2.P2g

解:

(1)对断面1—1和断面2—2列伯努利方程:

V3P3.

、z^'z3■hwi_3

■g2g「g

可得:

V3=3m/s由AV[=AV2十A3V3,得:

V2=1.2m/s

(2)对断面1—1和断面2—2列伯努利方程:

2_2_

hwi_2

Vi+P+V2+P2

——z^-——z2g-g2g-g

可得:

P2=1.018105Pa

4-13定性绘制图示管道的总水头线和测管水头线。

4-14试证明均匀流的任意流束在两断面之间的水头损失等丁两断面的测管水头差。

22

证明:

对两断面歹0伯努利方程:

工+子+z〔=言十子+z2+hw1q

2g:

g12g:

g2

7Vi=V2

hwi-2

=Hpi-HP2

4-15当海拔高程z的变幅较大时,大气可近似成理想气体,状态方程为

Pa(z)=PaRT,其中R为气体常数。

试推求Pa(z)和「a(z)随z变化的函数关系

解:

P」Z)=Pa°(1—如/T。

律直

4-16锅炉排烟风道如图所示。

已知烟气密度为Ps=0.8kg/m3,空气密度为

R=1.2kg/m3,烟囱高H=30m,烟囱出口烟气的流速为10m/s。

(1)若自锅炉至

烟囱出口的压强损失为产pw=200Pa,求风机的全压。

(2)若不安装风机,而是完全依靠烟囱的抽吸作用排烟,压强损失应减小到多大?

解:

(1)若自锅炉至烟囱出口的压强损失为产pw=200Pa,风机的全压为

122.4Pa;

(2)若不安装风机,而是完全依靠烟囱的抽吸作用排烟,压强损失可减

小到77.6Pa以下。

4-17管道泄水针阀全开,位置如图所示。

已知管道直径d1=350mm,出口直径d2=150mm,流速V2=30m/s,测得针阀拉杆受力F=490N,若不计能量损失,试求连接管道出口段的螺栓所受到的水平作用力。

解:

连接管道出口段的螺栓所受到的水平■拉力为28.4x103N。

恕4-1?

 

4-1S图

4-18嵌入支座内的一段输水管,其直径由d1=1.5m变化到d2=lm,如图示。

当支座前的压强pl=4at(相对压强),流量为Q=1.8m3/s时,试确定渐变段支座所受的轴向力R(不计水头损失)。

解:

取直径为d1处的截面为1-1,直径为d2处为的截面2-2,两截面包围的

22

空间为控制体,对其列出伯努利方程:

岂•旦=也•典

2g:

g2g「g

根据连续方程:

-就耳=三d;V2=Q

44

可得,•.M=1.02m/s,V2=2.29m/s

设水平向右为正方向,根据动量定理有:

PQ(V2-V1)=p兰d12_P2^d;+R

44

得:

R-一3.84105N

则水管对水的作用力是水平■向左的,由牛顿第三定律可知,水对水管壁的作用力是水平向右的,大小为38.4KN。

4-19斜冲击射流的水平面俯视如图所示,水自喷嘴射向一与其交角成60

的光滑平■板上(不计摩擦阻力)。

若喷嘴出口直径d=25mm,喷射流量Q=33.4L/s,试求射流沿平板向两侧的分流流量Qi和Q2以及射流对平板的作用力F。

假定水头损失可忽略不计,喷嘴轴线沿水平■方向。

解:

以平板法线方向为x轴方向,向右为正,根据动量定理得:

—R--mvsin60--『Qvsin60‘

即:

R=PQvsin60°

因为:

Q=—d2v

4

所以v=68m/s

所以,R=1967N

射流对平板的作用力R「=-R=1967N,方向沿x轴负向。

歹0y方向的动量定理:

代Q1v1「「Q2v2「;Qvcos60、=0

因为v1=v2

1

所以Q1-Q2=;Q

乂因为Q1-Q2=Q

31

所以,Qi=—Q=25.05L/s,Q2=—Q=8.35L/s

44

4-20一平板垂直丁自由水射流的轴线放置(如图示),截去射流流量的一部分Ql,并引起剩余部分Q2偏转一角度&已知射流流量Q=36L/s,射流流速V=30m/s,且Ql=12L/s,试求射流对平板的作用力R以及射流偏转角0(不计摩擦力和重力)。

解:

以平■板法线方向为x轴方向,向右为正,根据动量定理得:

Fy=m2v2sin口-mv〔=0

即:

Q1,=Q2v2sin8,乂因为Q2=Q—Q1=24L/s

所以:

v1=2v2sinB

*v1=v2=v

—30°

-Fx=m2v2cosi-mv

Fx=mv-m2v2cos^

=YQv-Q2v2cos”

=456.5N

射流对平■板的作用力:

F=456.5N,方向水平■向右。

4-21水流通过图示圆截面收缩弯管。

若已知弯管直径dA=250mm,dB=200

3

mm,流重Q=0.12m/s。

断面A—A的相对压强多pA=1.8at,官道中心线均在同

一水平■面上。

求固定此弯管所需的力Fx与Fy(可不计水头损失)。

解:

取水平向右为x轴正向,竖直向上为y轴正向。

TT-TT

根据连续方程:

一dA2vA=—dB2vB=Q44

22

根据伯努利方程:

Yj•旦=宜•企

2g■g2g•g

所以:

vA=2.4m/s,vB=3.8m/s,R=1.76at

在水平■方向根据动量定理得:

所以:

Fx=6023.23N

在竖直方向根据动量定理得:

2

FyFB—dBsin60=mvBsin60y4

所以:

Fy=4382.8N

所以,固定此弯管所需要的力为:

Fx=6023.23N,方向水平向左;Fy=4382.8N,

方向水平向下。

4-22试求出题4-5图中所示短管出流的容器支座受到的水平作用力

解:

根据动量定理:

Fx+R兰d12—R兰d22=m(v2-v1)=PQ(v2-v1)44

可得:

Fx=426.2N

所以,支座受到的水平■作用力Fx=426.2N,方向水平■向左。

4-23浅水中一艘喷水船以水泵作为动力装置向右方航行,如图示。

若水泵的流量Q=80L/s,船前吸水的相对速度wi=0.5m/s,船尾出水的相对速度

w2=12m/s。

试求喷水船的推进力R。

解:

根据动量定理有:

R=mw2-mw1=:

Q(w2-w1)=920N

4-24图示一水平放置的具有对称臂的洒水器,旋臂半径R=0.25m,喷嘴直径d=l0mm,喷嘴倾角0=45,若总流量Q=0.56L/s,求:

(1)不计摩擦时的最大旋转角速度①;⑵3=5rad/s时为克服摩擦应施加多大的扭矩M及所作功率P。

解:

(1)不计摩擦时的最大旋转角速度w=10.8rad/s;

(2)炉5rad/s时为克服摩擦应施加的扭矩M=0.712Nm,所作功率P=3.56W。

4-25图示一水射流垂直冲击平■板ab,在点c处形成滞点。

已知射流流量Q=5L/s,喷口直径d=10mm。

若不计粘性影响,喷口断面流速分布均匀,试求滞点c处的压强。

解:

Q=—d2v

4

所以v=63.66m/s

v1=v2=v=63.66m/s

根据伯努利方程:

丈,且此=0

2gig2g「g

解得:

Pc=206.78mH2O

4-26已知圆柱绕流的流速分量为

ra2)fa2)

u「=七1cos8,Ua=-Uw1+—sine

I「Jr)

其中,a为圆柱的半径,极坐标(r,3的原点位丁圆柱中心上。

(1)求流函数代并画出流谱若无穷远处来流的压强为p。

,求r=a处即圆柱表面上的压强分布。

解:

(1)=。

皿(1—a2/r2rsinO

⑵p=p%+0.5U*(1-4sin2B)

4-27已知两平■行板间的流速场为u=C[(h/2)2-y2],v=0,其中,

C=250(s后),h=0.2m。

当取y=-h/2时,炉0。

(1)流函数奶

(2)单宽流量q。

解:

(1)

d=-vdxudy

=udy

=C[(h/2)2-y2]dy

-.2_2

=C(h/2)dy—Cydy

所以,甲=Cy(h/2)2—。

矿十。

3

因为:

当h=0.2m,y=-0.1m时,伊0,代入上式得:

C「=1/6

所以:

.5.250y31

236

(2)q=甲(0.1)—平(一0.1)=0.333—0=0.333m2/s

4-28设有一上端开口、盛有液体的直立圆筒如图示,绕其中心铅直轴作等速运动,角速度为3。

圆筒内液体也随作等速运动,液体质点问无相对运动,速度分布为u=vy,v=(ox,w=0。

试用欧拉方程求解动压强p的分布规律及自由液面的形状。

解:

建立如图所示的坐标系,可知其单位质量力为:

X=co2x,Y=co2y,Z=-g故液体的平■衡微分方程为:

dp-:

-'(2xdx2ydy-gdz)

22

"r-

p="[---g(z-。

)]C

2

当r=0,z=z0时,p=0

所以:

「=,匚『-弥-3]

22

在自由液面处P=0,所以,自由液面方程为也二=g(z-Zo)

2

液面的形状为绕z轴的回转抛物面。

4-29图示一平面孔口流动(即狭长缝隙流动),因孔口尺寸较小,孔口附近的流场可以用平面点汇表示,点汇位丁孔口中心。

已知孔口的作用水头H=5m,单宽出流流量q=20L/s,求图中a点的流速大小、方向和压强。

解:

Ur=———=0.0028m/s,^=0

2二r2二5'

方向由a点指向孔口中心pa6mH2。

=P所以:

pa=6mH2O

4-30完全自流井汲水时产生的渗流场可以用平■面点汇流动求解。

图示自流并位丁铅直不透水墙附近,渗流场为图示两个点汇的叠加,两者以不适水墙为对称面。

求汲水流量Q=1m3/s时,流动的势函数代以及沿壁面上的流速分布。

解:

*=-—iin(r1r2),u=0,v=_y2jir(4+y)

4-31图示一盛水圆桶底中心有一小孔口,孔口出流时桶内水体的运动可以由兰金涡近似,其流速分布如图所示:

中心部分(r

部(r>r°)为有势流动u(r)=uoro/r,其中U0=u(r=r°)。

设孔口尺寸很小,r°也很小,圆桶壁面上的流速ur=u(r=R)@0,流动是包定的。

(1)求速度环量「的径向分布;

(2)求水面的形状。

解:

(1)当r

当r占r°时,「=2归0&

(2)g(z-z°)=0

2g

4-32偶极子是等强度源和汇的组合,如图a所示:

点源位丁x+=(-82,0)点源强度为Q>0;点汇位丁x-=(+&2,0),强度为-Q<0。

点源与点汇叠加后,当偶极子强度M=演为有限值而取A0时,就得到式(4-75)中偶极子的势函数和流函数。

试利用偶极子与均匀平行流叠加的方法(图b),导出圆柱绕流的流

速分布(可参见习题4-26)。

a2

解:

Ur=U/1-一^)COS0

r

2

a.

Ur=-U:

<12)sin-

r

4-33在圆柱绕流流场上再叠加上一个位丁原点的顺时针点涡,得到有环量的圆柱绕流,如图示。

(1)当「=^aUao,圆柱表面上的两个滞留点重合。

求过滞留点的两条流线的方程;

(2)采用圆柱表面压强积分的方法,试推导出升力公式;(3)设「:

>4兀aU^,试确定滞留点的位置。

角昆:

(1)U*(r—a2/rSin8—(!

7'2冗Jnr=—2U*(1+alna)

⑵Py=;?

U:

/

-7(r/4ia^^-1

4-34设水平放置的90弯管如图所示,内、外壁位丁半径分另U为ri=200mm和「2=400mm的同心圆上。

若周向流速u(r)的断面分布与自由涡相同,轴线流速u(r°)=2m/s,

(1)求水流通过时弯管内、外壁的压差;⑵验证流体的总机械能在弯管内、外壁处相等。

趣1-33图购4-34图

解:

(1)Ap=3.375kPa

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2