scale space.docx

上传人:b****3 文档编号:5147652 上传时间:2023-05-08 格式:DOCX 页数:11 大小:160.87KB
下载 相关 举报
scale space.docx_第1页
第1页 / 共11页
scale space.docx_第2页
第2页 / 共11页
scale space.docx_第3页
第3页 / 共11页
scale space.docx_第4页
第4页 / 共11页
scale space.docx_第5页
第5页 / 共11页
scale space.docx_第6页
第6页 / 共11页
scale space.docx_第7页
第7页 / 共11页
scale space.docx_第8页
第8页 / 共11页
scale space.docx_第9页
第9页 / 共11页
scale space.docx_第10页
第10页 / 共11页
scale space.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

scale space.docx

《scale space.docx》由会员分享,可在线阅读,更多相关《scale space.docx(11页珍藏版)》请在冰点文库上搜索。

scale space.docx

scalespace

Scalespace

Scale-spacetheoryisaframeworkformulti-scalesignalrepresentationdevelopedbythecomputervision,imageprocessingandsignalprocessingcommunitieswithcomplementarymotivationsfromphysicsandbiologicalvision.Itisaformaltheoryforhandlingimagestructuresatdifferentscales,byrepresentinganimageasaone-parameterfamilyofsmoothedimages,thescale-spacerepresentation,parametrizedbythesizeofthesmoothingkernelusedforsuppressingfine-scalestructures.[1][2][3][4][5][6][7]Theparametertinthisfamilyisreferredtoasthescaleparameter,withtheinterpretationthatimagestructuresofspatialsizesmallerthanabout

havelargelybeensmoothedawayinthescale-spacelevelatscalet.

Themaintypeofscale-spaceisthelinear(Gaussian)scale-space,whichhaswideapplicabilityaswellastheattractivepropertyofbeingpossibletoderivefromasmallsetofscale-spaceaxioms.Thecorrespondingscale-spaceframeworkencompassesatheoryforGaussianderivativeoperators,whichcanbeusedasabasisforexpressingalargeclassofvisualoperationsforcomputerizedsystemsthatprocessvisualinformation.Thisframeworkalsoallowsvisualoperationstobemadescaleinvariant,whichisnecessaryfordealingwiththesizevariationsthatmayoccurinimagedata,becausereal-worldobjectsmaybeofdifferentsizesandinadditionthedistancebetweentheobjectandthecameramaybeunknownandmayvarydependingonthecircumstances.[8]

Definition

Thenotionofscale-spaceappliestosignalsofarbitrarynumbersofvariables.Themostcommoncaseintheliteratureappliestotwo-dimensionalimages,whichiswhatispresentedhere.Foragivenimagef(x,y),itslinear(Gaussian)scale-spacerepresentationisafamilyofderivedsignalsL(x,y;t)definedbytheconvolutionoff(x,y)withtheGaussiankernel

suchthat

wherethesemicolonintheargumentofLimpliesthattheconvolutionisperformedonlyoverthevariablesx,y,whilethescaleparametertafterthesemicolonjustindicateswhichscalelevelisbeingdefined.ThisdefinitionofLworksforacontinuumofscales

buttypicallyonlyafinitediscretesetoflevelsinthescale-spacerepresentationwouldbeactuallyconsidered.

tisthevarianceoftheGaussianfilterandasalimitfort=0thefiltergbecomesanimpulsefunctionsuchthatL(x,y;0)=f(x,y),thatis,thescale-spacerepresentationatscalelevelt=0istheimagefitself.Astincreases,Listheresultofsmoothingfwithalargerandlargerfilter,therebyremovingmoreandmoreofthedetailswhichtheimagecontains.Sincethestandarddeviationofthefilteris

detailswhicharesignificantlysmallerthanthisvaluearetoalargeextentremovedfromtheimageatscaleparametert,seethefollowingfigureand[9]forgraphicalillustrations.

Scale-spacerepresentationL(x,y;t)atscalet=0,correspondingtotheoriginalimagef

Scale-spacerepresentationL(x,y;t)atscalet=1

Scale-spacerepresentationL(x,y;t)atscalet=4

Scale-spacerepresentationL(x,y;t)atscalet=16

Scale-spacerepresentationL(x,y;t)atscalet=64

Scale-spacerepresentationL(x,y;t)atscalet=256

[edit]WhyaGaussianfilter?

Whenfacedwiththetaskofgeneratingamulti-scalerepresentationonemayask:

Couldanyfiltergoflow-passtypeandwithaparametertwhichdeterminesitswidthbeusedtogenerateascale-space?

Theanswerisno,asitisofcrucialimportancethatthesmoothingfilterdoesnotintroducenewspuriousstructuresatcoarsescalesthatdonotcorrespondtosimplificationsofcorrespondingstructuresatfinerscales.Inthescale-spaceliterature,anumberofdifferentwayshavebeenexpressedtoformulatethiscriterioninprecisemathematicalterms.

TheconclusionfromseveraldifferentaxiomaticderivationsthathavebeenpresentedisthattheGaussianscale-spaceconstitutesthecanonicalwaytogeneratealinearscale-space,basedontheessentialrequirementthatnewstructuresmustnotbecreatedwhengoingfromafinescaletoanycoarserscale.[2][3][5][8][10][11][12][13][14][15]Conditions,referredtoasscale-spaceaxioms,thathavebeenusedforderivingtheuniquenessoftheGaussiankernelincludelinearity,shiftinvariance,semi-groupstructure,non-enhancementoflocalextrema,scaleinvarianceandrotationalinvariance.

Equivalently,thescale-spacefamilycanbedefinedasthesolutionofthediffusionequation(forexampleintermsoftheheatequation),

withinitialconditionL(x,y;0)=f(x,y).Thisformulationofthescale-spacerepresentationLmeansthatitispossibletointerprettheintensityvaluesoftheimagefasa"temperaturedistribution"intheimageplaneandthattheprocesswhichgeneratesthescale-spacerepresentationasafunctionoftcorrespondstoheatdiffusionintheimageplaneovertimet(assumingthethermalconductivityofthematerialequaltothearbitrarilychosenconstant½).Althoughthisconnectionmayappearsuperficialforareadernotfamiliarwithdifferentialequations,itisindeedthecasethatthemainscale-spaceformulationintermsofnon-enhancementoflocalextremaisexpressedintermsofasignconditiononpartialderivativesinthe2+1-Dvolumegeneratedbythescale-space,thuswithintheframeworkofpartialdifferentialequations.Furthermore,adetailedanalysisofthediscretecaseshowsthatthediffusionequationprovidesaunifyinglinkbetweencontinuousanddiscretescale-spaces,whichalsogeneralizestonon-linearscale-spaces,forexample,usinganisotropicdiffusion.Hence,onemaysaythattheprimarywaytogenerateascale-spaceisbythediffusionequation,andthattheGaussiankernelarisesastheGreen'sfunctionofthisspecificpartialdifferentialequation.

Motivations

Themotivationforgeneratingascale-spacerepresentationofagivendatasetoriginatesfromthebasicobservationthatreal-worldobjectsarecomposedofdifferentstructuresatdifferentscales.Thisimpliesthatreal-worldobjects,incontrasttoidealizedmathematicalentitiessuchaspointsorlines,mayappearindifferentwaysdependingonthescaleofobservation.Forexample,theconceptofa"tree"isappropriateatthescaleofmeters,whileconceptssuchasleavesandmoleculesaremoreappropriateatfinerscales.Foracomputervisionsystemanalysinganunknownscene,thereisnowaytoknowaprioriwhatscalesareappropriatefordescribingtheinterestingstructuresintheimagedata.Hence,theonlyreasonableapproachistoconsiderdescriptionsatmultiplescalesinordertobeabletocapturetheunknownscalevariationsthatmayoccur.Takentothelimit,ascale-spacerepresentationconsidersrepresentationsatallscales.[8]

Anothermotivationtothescale-spaceconceptoriginatesfromtheprocessofperformingaphysicalmeasurementonreal-worlddata.Inordertoextractanyinformationfromameasurementprocess,onehastoapplyoperatorsofnon-infinitesimalsizetothedata.Inmanybranchesofcomputerscienceandappliedmathematics,thesizeofthemeasurementoperatorisdisregardedinthetheoreticalmodellingofaproblem.Thescale-spacetheoryontheotherhandexplicitlyincorporatestheneedforanon-infinitesimalsizeoftheimageoperatorsasanintegralpartofanymeasurementaswellasanyotheroperationthatdependsonareal-worldmeasurement.[4]

Thereisacloselinkbetweenscale-spacetheoryandbiologicalvision.Manyscale-spaceoperationsshowahighdegreeofsimilaritywithreceptivefieldprofilesrecordedfromthemammalianretinaandthefirststagesinthevisualcortex.Intheserespects,thescale-spaceframeworkcanbeseenasatheoreticallywell-foundedparadigmforearlyvision,whichinadditionhasbeenthoroughlytestedbyalgorithmsandexperiments.[3][8]

[edit]Gaussianderivativesandthenotionofavisualfront-end

Atanyscaleinscale-space,wecanapplylocalderivativeoperatorstothescale-spacerepresentation:

DuetothecommutativepropertybetweenthederivativeoperatorandtheGaussiansmoothingoperator,suchscale-spacederivativescanequivalentlybecomputedbyconvolvingtheoriginalimagewithGaussianderivativeoperators.ForthisreasontheyareoftenalsoreferredtoasGaussianderivatives:

Interestingly,theuniquenessoftheGaussianderivativeoperatorsaslocaloperationsderivedfromascale-spacerepresentationcanbeobtainedbysimilaraxiomaticderivationsasareusedforderivingtheuniquenessoftheGaussiankernelforscale-spacesmoothing.[3][16]

TheseGaussianderivativeoperatorscaninturnbecombinedbylinearornon-linearoperatorsintoalargervarietyofdifferenttypesoffeaturedetectors,whichinmanycasescanbewellmodelledbydifferentialgeometry.Specifically,invariance(ormoreappropriatelycovariance)tolocalgeometrictransformations,suchasrotationsorlocalaffinetransformations,canbeobtainedbyconsideringdifferentialinvariantsundertheappropriateclassoftransformationsoralternativelybynormalizingtheGaussianderivativeoperatorstoalocallydeterminedcoordinateframedeterminedfrome.g.apreferredorientationintheimagedomainorbyapplyingapreferredlocalaffinetransformationtoalocalimagepatch(seethearticleonaffineshapeadaptationforfurtherdetails).

WhenGaussianderivativeoperatorsanddifferentialinvariantsareusedinthiswayasbasicfeaturedetectorsatmultiplescales,theuncommittedfirststagesofvisualprocessingareoftenreferredtoasavisualfront-end.Thisoverallframeworkhasbeenappliedtoalargevarietyofproblemsincomputervision,includingfeaturedetection,featureclassification,imagesegmentation,imagematching,motionestimation,computationof

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2