基于matlab的相移键控系统仿真.docx

上传人:b****3 文档编号:5300721 上传时间:2023-05-08 格式:DOCX 页数:147 大小:2.52MB
下载 相关 举报
基于matlab的相移键控系统仿真.docx_第1页
第1页 / 共147页
基于matlab的相移键控系统仿真.docx_第2页
第2页 / 共147页
基于matlab的相移键控系统仿真.docx_第3页
第3页 / 共147页
基于matlab的相移键控系统仿真.docx_第4页
第4页 / 共147页
基于matlab的相移键控系统仿真.docx_第5页
第5页 / 共147页
基于matlab的相移键控系统仿真.docx_第6页
第6页 / 共147页
基于matlab的相移键控系统仿真.docx_第7页
第7页 / 共147页
基于matlab的相移键控系统仿真.docx_第8页
第8页 / 共147页
基于matlab的相移键控系统仿真.docx_第9页
第9页 / 共147页
基于matlab的相移键控系统仿真.docx_第10页
第10页 / 共147页
基于matlab的相移键控系统仿真.docx_第11页
第11页 / 共147页
基于matlab的相移键控系统仿真.docx_第12页
第12页 / 共147页
基于matlab的相移键控系统仿真.docx_第13页
第13页 / 共147页
基于matlab的相移键控系统仿真.docx_第14页
第14页 / 共147页
基于matlab的相移键控系统仿真.docx_第15页
第15页 / 共147页
基于matlab的相移键控系统仿真.docx_第16页
第16页 / 共147页
基于matlab的相移键控系统仿真.docx_第17页
第17页 / 共147页
基于matlab的相移键控系统仿真.docx_第18页
第18页 / 共147页
基于matlab的相移键控系统仿真.docx_第19页
第19页 / 共147页
基于matlab的相移键控系统仿真.docx_第20页
第20页 / 共147页
亲,该文档总共147页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于matlab的相移键控系统仿真.docx

《基于matlab的相移键控系统仿真.docx》由会员分享,可在线阅读,更多相关《基于matlab的相移键控系统仿真.docx(147页珍藏版)》请在冰点文库上搜索。

基于matlab的相移键控系统仿真.docx

基于matlab的相移键控系统仿真

 

江西农业大学

通信原理课程设计报告

课题名称基于Matlab的相移键控仿真设计

班 级信工1301      

学号 20133332         

姓名权俊男

2O16年6月

基于Matlab的2PSK,2DPSK仿真

 

摘要:

现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制技术

一直是研究的一个重要方向。

本设计主要叙述了数字信号的调制方式,介绍了2PSK数字调制方式的

基本原理,功率谱密度,并运用MATLAB软件对数字调制方式2PSK进行了编程仿真实现,在MATLAB平

台上建立2PSK和2DPSK调制技术的仿真模型.进一步学习了MATLAB编程软件,将MATLAB与通信系统

中数字调制知识联系起来,为以后在通信领域学习和研究打下了基础在计算机上,运用MATLAB软件

来实现对数字信号调制技术的仿真。

关键词:

数字调制与解调;MATLAB;2PSK;2DPSK;

 

第1章绪论

1.1调制方式

数字通信系统,按调制方式可以分为基带传输和带通传输.数字基带信号的功率一般处于从零开始到某一频率(如0~6M)低频段,因而在很多实际的通信(如无线信道)中就不能直接进行传输,需要借助载波调制进行频谱搬移,将数字基带信号变换成适合信道传输的数字频带信号进行传输,这种传输方式,称为数字信号的频带传输或调制传输、载波传输。

所谓调制,是用基带信号对载波波形的某参量进行控制,使该参量随基带信号的规律变化从而携带消息。

对数字信号进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。

数字基带通信系统中四种基本的调制方式分别称为振幅键控(ASK,Amplitude-Shiftkeying)、移频键控(FSK,Frequency-Shiftkeying)、移相键控(PSK,Phase-Shiftkeying)和差分移相键(DPSK,DifferentPhase-Shiftkeying)。

本次课程设计对PSK,DPSK这两种调制方式进行了仿真。

1。

2设计要求

1。

2。

1设计内容

用MATLAB完成对2PSK、2DPSK的调制与解调仿真电路设计,并对仿真结果进行分析,可编写程序,也可硬件设计框图

1.2.2 设计参数(参数可以自行设置)

1、传输基带数字信号(15位)码元周期T=0。

01S

2、载波频率:

15KHz

1。

2.3 设计仪器

计算机和MATLAB软件

第2章2PSK,2DPSK原理

2。

12PSK原理

2。

1.12PSK基本原理

二进制移相键控,简记为2PSK或BPSK。

2PSK信号码元的“0”和“1”分别用两个不同的初始相位“0”和“”来表示,而其振幅和频率保持不变。

因此,2PSK信号的时域表达式为:

(t)=Acost+)

其中,表示第n个符号的绝对相位:

因此,上式可以改写为:

这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制移相键控方式。

二进制移相键控信号的典型时间波形如图2-1.

 

图2-1二进制相移键控信号的时间波形

2.1.22PSK调制原理

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号.2PSK信号调制有两种方法,即模拟调制法和键控法。

通常用已调信号载波的0°和180°分别表示二进制数字基带信号的 1和0,模拟调制法用两个反相的载波信号进行调制。

2PSK以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0°,当基带信号为1时相对于初始相位为180°。

键控法,是用载波的相位来携带二进制信息的调制方式.通常用0°和180°来分别代表0和1.其时域表达式为:

其中,2PSK的调制中an必须为双极性码.两种方法原理图分别如图2—2和图2-3所示。

图2-2 模拟调制原理图

 

图2—3键控法原理图

 

2.1.32PSK解调原理

由于2PSK的幅度是恒定的,必须进行相干解调。

经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。

判决器是按极性来判决的。

即正抽样值判为1,负抽样值判为0。

2PSK信号的相干解调原理图如图2-4所示,各点的波形如图2—5所示。

由于2PSK信号的载波回复过程中存在着180°的相位模糊,即恢复的本地载波与所需相干载波可能相同,也可能相反,这种相位关系的不确定性将会造成解调出的数字基带信号与发送的基带信号正好相反,即“1”变成“0”吗“0”变成“1”,判决器输出数字信号全部出错。

这种现象称为2PSK方式的“倒π”现象或“反相工作”。

 

图2-42PSK的相干解调原理图

 

图2-5相干解调中各点波形图

2.22DPSK原理

2.2。

12DPSK基本原理

二进制差分相移键控常简称为二相相对调相,记为2DPSK.它不是利用载波相位的绝对数值传送数字信息,而是用前后码元的相对载波相位值传送数字信息.所谓相对载波相位是只本码元初相与前一码元初相之差。

传输系统中要保证信息的有效传输就必须要有较高的传输速率和很低的误码率.在传输信号中,2PSK信号和2ASK及2FSK信号相比,具有较好的误码率性能,但是,在2PSK信号传输系统中存在相位不确定性,并将造成接收码元“0”和“1"的颠倒,产生误码.为了保证2PSK的优点,又不会产生误码,将2PSK体制改进为二进制差分相移键控(2DPSK),及相对相移键控.

2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。

现假设用Φ表示本码元初相与前一码元初相之差,并规定:

Φ=0表示0码,Φ=π表示1码。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图见图2—6。

 

图2-62DPSK信号波形图

2.2.22DPSK调制原理

二进制差分相移键控。

2DPSK方式是用前后相邻码元的载波相对相位变化来表示数字信息。

假设前后相邻码元的载波相位差为,可定义一种数字信息与之间的关系为:

为前一码元的相位。

实现二进制差分相移键控的最常用的方法是:

先对二进制数字基带信号进行差分编码,然后对变换出的差分码进行绝对调相即可。

2DPSK调制原理图如图2-7所示.

图2—72DPSK调制原理框图

 

2.2.32DPSK解调原理

2DPSK信号解调有相干解调方式和差分相干解调。

用差分相干解调这种方法解调时不需要恢复本地载波,只要将DPSK信号精确地延迟一个码元时间间隔,然后与DPSK信号相乘,相乘的结果就反映了前后码元的相对相位关系,经低通滤波后直接抽样判决即可恢复出原始的数字信息,而不需要在进行差分解码。

相干解调码变换法及相干解调法的解调原理是,先对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。

在解调过程中,若相干载波产生

相位模糊,解调出的相对码将产生倒置现象,但是经过码反变换器后,输出的绝对码不会发生任何倒置现象,从而解决了载波相位模糊的问题。

本次设计采用相干解调。

两种解调方式的原理图如图2-8和图2-9所示。

2DPSK相干解调各点波形图如图2-10所示。

 

图 2-82DPSK差分相干解调原理图

 

图2-92DPSK相干解调原理图

 

第3章实验过程

 

3。

12PSK仿真部分

3。

1.12PSK仿真图

用MATLAB搭建好的2PSK仿真图如下:

图3-12PSK仿真图

 

3.1.22PSK模块的参数设置:

1)相乘模块

图3—2 相乘器参数设置

 

2)低通滤波器模块

图3-3滤波器其参数设置

 

3)抽样判决模块

图3—4pulse generator 参数设置

 

3.22DPSK仿真部分

3.2.12DPSK仿真图

用MATLAB搭建好的2DPSK仿真图如下:

图3-52DPSK仿真图

2.2。

22DPSK模块的参数设置:

载波模块

图3—6载波参数设置

 

2)乘法器模块

图3-7乘法器参数设置

3)基带模块

图3—8基带信号参数设置

 

4)UnipolartoBipolarConverte模块

图3-9Unipolar toBipolarConverter参数设置

 

5)码变换模块

 

图3-10 LogicalOperator参数设置

 

图3-11UnitDelay参数设置

 

图3-12 Data TypeConversion参数设置

 

6)滤波器模块

图3-13带通滤波器参数设置

图3-14 低通滤波器参数设置

 

第4章仿真结果

4。

12PSK仿真结果

图4-1 2PSK电路仿真波形

4.22DPSK仿真结果

图4—22DPSK电路仿真波形

 

附录:

通过编写M文件程序:

2PSK调制解调程序及注释clear allclose alli=10;j=5000;fc=4;               %载波频率fm=i/5;             %码元速率B=2*fm;t=linspace(0,5,j);a=round(rand(1,i));    %随机序列,基带信号figure(3);stem(a);st1=t;for n=1:

10    if a(n)<1;        for m=j/i*(n—1)+1:

j/i*n            st1(m)=0;        end    else        for m=j/i*(n-1)+1:

j/i*n            st1(m)=1;        end    endendfigure

(1);

subplot(411);

plot(t,st1);

title(’基带信号st1');

axis([0,5,—1,2]);

%由于PSK中的是双极性信号,因此对上面所求单极性信号取反来与之一起构成双极性码

st2=t;  

fork=1:

j;

  ifst1(k)〉=1;

   st2(k)=0;

else

    st2(k)=1;

   end

end;

subplot(412);

plot(t,st2);

title('基带信号反码st2');

axis([0,5,-1,2]);

st3=st1-st2;

subplot(413);

plot(t,st3);

title('双极性基带信号st3’);

axis([0,5,-2,2]);

s1=sin(2*pi*fc*t);

subplot(414);

plot(s1);

title(’载波信号s1’);

e_psk=st3.*s1;

figure

(2);

subplot(511);

plot(t,e_psk);

title('e_2psk');

noise=rand(1,j);

psk=e_psk+noise; %加入噪声

subplot(512);

plot(t,psk);

title(’加噪后波形’);

psk=psk.*s1;   %与载波相乘

subplot(513);

plot(t,psk);

title('与载波s1相乘后波形');

[f,af]= T2F(t,psk);    %通过低通滤波器

[t,psk]=lpf(f,af,B);

subplot(514);

plot(t,psk);

title('低通滤波后波形');

for m=0:

i-1;

ifpsk(1,m*500+250)<0;

forj=m*500+1:

(m+1)*500;

  psk(1,j)=0;

  end

 else

   forj=m*500+1:

(m+1)*500;

 psk(1,j)=1;

end

  end

end

subplot(515);

plot(t,psk);

axis([0,5,—1,2]);

title('抽样判决后波形')

 

2DPSK调制解调程序及注释clear allclose alli=10;j=5000;fc=4;                     %载波频率fm=i/5;                    %码元速率B=2*fm;t=linspace(0,5,j);a=round(rand(1,i));figure(4);stem(a);st1=t;for n=1:

10    if a(n)<1;        for m=j/i*(n—1)+1:

j/i*n            st1(m)=0;        end    else        for m=j/i*(n—1)+1:

j/i*n            st1(m)=1;        end    endendfigure

(1);subplot(321);plot(t,st1);title(’绝对码');axis([0,5,—1,2]);b=zeros(1,i);                 %全零矩阵b

(1)=a

(1);for n=2:

10    if a(n)>=1;        if b(n—1)>=1            b(n)=0;        else            b(n)=1;        end    else        b(n)=b(n-1);    endendst1=t;for n=1:

10    if b(n)<1;        for m=j/i*(n—1)+1:

j/i*n            st1(m)=0;        end    else        for m=j/i*(n—1)+1:

j/i*n            st1(m)=1;        end    endendsubplot(323);plot(t,st1);title('相对码st1');axis([0,5,—1,2]);st2=t;   for k=1:

j;    if st1(k)>=1;        st2(k)=0;    else        st2(k)=1;    endend;subplot(324);plot(t,st2);title('相对码反码st2’);axis([0,5,-1,2]);s1=sin(2*pi*fc*t);subplot(325);plot(s1);title('载波信号s1');s2=sin(2*pi*fc*t+pi);subplot(326);plot(s2);

title('低通滤波后波形');

st=zeros(1,i);     %全零矩阵

form=0:

i-1;

 ifdpsk(1,m*500+250)〈0;

 st(m+1)=0;

    forj=m*500+1:

(m+1)*500;

 dpsk(1,j)=0;

end

 else

   forj=m*500+1:

(m+1)*500;

 st(m+1)=1;

    dpsk(1,j)=1;

   end

 end

end

subplot(413);

plot(t,dpsk);

axis([0,5,-1,2]);

title('抽样判决后波形')

dt=zeros(1,i);      %全零矩阵

dt

(1)=st(1);

for n=2:

10;

if(st(n)-st(n—1))〈=0&&(st(n)-st(n-1))>—1;

 dt(n)=0;

 else

dt(n)=1;

end

end

st=t;

forn=1:

10

  if dt(n)<1;

   form=j/i*(n-1)+1:

j/i*n

  st(m)=0;

  end

 else

   form=j/i*(n-1)+1:

j/i*n

   st(m)=1;

  end

  end

end

subplot(414);

plot(t,st);

axis([0,5,—1,2]);

title('码反变换后波形')

 

佳木斯大学毕业论文

基于Matlab的人脸识别系统设计与仿真

 

学院 信息电子技术

专 业电子信息工程

班 级11级1班

学籍号11100540116

姓  名 杨雷

指导教师  周经国

佳 木斯 大学

2015年6月10日

摘要

人脸识别即指利用分析比对人脸视觉特征信息从而达到身份鉴别效果的计算机技术。

人脸识别是一项当下十分热门的计算机技术的研究领域,该项技术可以人脸明暗侦测,并且自动调整动态曝光补偿,同时对人脸追踪侦测,并自动调整影像放大;这项技术属于生物特征识别技术的一种,是利用生物体(一般指人)本身的生物特征从而达到区分生物体个体的目的。

人脸识别技术目前主要用做身份识别。

由于视频监控的飞速普及,使这项应用迫切的需要一种能实现在用户非配合状态下、远距离的进行快速身份识别的技术,以求能在远距离之下快速识别人员身份,从而实现智能预警的功能。

最佳的选择无疑是人脸识别技术。

采用快速人脸检测识别技术可以从视频监控图象中实时捕获到人脸信息,并与人脸数据库中的已存信息进行实时比对,从而达到快速身份识别的效果。

报告利用MATLAB软件来实现人脸信息检测与识别,利用YCbCr空间以及灰度图像来实现人脸的边缘分割,将真彩图像转换为灰度图像,并根据肤色在YCbCr色度空间上的分布范围,来设定门限阀值,从而实现人脸区域与非人脸区域的分割,通过图像处理等一系列的操作来剔除干扰因素,再通过长宽比和目标面积等方法在图像中定位出人脸区域,经试验,该方法能够排除面部表情、衣着背景、发型等干扰因素,从而定位出人脸区域。

关键词:

Matlab软件;灰度图像;边缘分割;人脸区域

 

Abstract

Face recognitionespecially usecomparativeanalysisfacevisualfeatureinformationforidentificationofcomputer technology.Facerecognition isa hotresearchfieldcomputer technology, face detection, lightandshadecanbeautomatically adjusteddynamically exposurecompensation,human facetrackingdetection,automatic adjustmentofimagemagnification;Itbelongs tothe biometricidentificationtechnology,itisoforganisms(generallyreferstoaperson) individualbiologicalcharacteristicstodistinguish betweentheorganism itself.

Facerecognitionismainlyused foridentification。

Becauseofthevideomonitoring isfastpopularization,manyofthe videomonitoring applicationis anurgentneedtoalong distance,the usernot cooperateconditionofrapididentificationtechnology,inorder.Face recognition technologyisundoubtedlythebestchoice,thefastfacedetection technologyto monitorinreal—time video imagesearchfromface,andwithreal-timethan face database,so as torealizerapididentification。

Report usingMATLABsoftware to realizeface informationdetection and recognition,using YCbCr space andgrayimageto realizethe faceedgesegmentation,thetrue colorimageis converted to a grayscale image,andaccordingto thecolorofskininYCbCrchroma spacedistribution,to set thethresholdthreshold,soas torealizethesegmentationof faceregionwiththefaceregion,throughaseries ofoperationssuch asimageprocessing toeliminate interferencefactors,andthroughsuchmeansasaspectratio andthetargetarea locatetheface regionin theimage, theexperiment,this methodcaneliminate facialexpressions,clothes, hairbackgroundinterferencefactors, soasto locate thefaceregion。

Keywords:

Matlab;Grayimage;edgesegmentation;faceregion

摘要1

目录3

第1章绪论4

1.1课题的研究背景、目的及意义4

1。

1。

1课题的研究背景4

1。

1。

2研究目的及意义5

1。

2 本课题的主要内容5

第2章图像处理的Matlab实现6

2.1 识别系统构成6

2.3 图像类型的转换7

2.4图像增强8

2。

5 灰度图像平滑与锐化处理9

2.6 边缘检测11

第3章人脸识别计算机系统12

3。

1系统基本构架12

3.2 人脸检测定位算法12

结论24

致谢25

附录1人脸识别的MATLAB源程序27

附录2外文参考文献及翻译31

 

第1章绪论

1。

1课题的研究背景、目的及意义

1。

1。

1课题的研究背景

数字图像处理技术是20世纪60年代发展起来

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 冶金矿山地质

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2