CAD基于施密特触发器的RC压控振荡器.docx

上传人:b****4 文档编号:5459298 上传时间:2023-05-08 格式:DOCX 页数:12 大小:69.34KB
下载 相关 举报
CAD基于施密特触发器的RC压控振荡器.docx_第1页
第1页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第2页
第2页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第3页
第3页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第4页
第4页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第5页
第5页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第6页
第6页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第7页
第7页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第8页
第8页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第9页
第9页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第10页
第10页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第11页
第11页 / 共12页
CAD基于施密特触发器的RC压控振荡器.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

CAD基于施密特触发器的RC压控振荡器.docx

《CAD基于施密特触发器的RC压控振荡器.docx》由会员分享,可在线阅读,更多相关《CAD基于施密特触发器的RC压控振荡器.docx(12页珍藏版)》请在冰点文库上搜索。

CAD基于施密特触发器的RC压控振荡器.docx

CAD基于施密特触发器的RC压控振荡器

HUNANUNIVERSITY

 

基于施密特触发器的RC压控振荡器

学院名称

物理与微电子科学学院

专业班级

电子科学与技术3班

学生学号

323

学生姓名

徐福珍

 

2012年05月24日

基于施密特触发器的RC压控振荡器

一、设计任务

1、用Workviewoffice软件在施密特触发器功能模块的基础上设计一个应知足较高的相位噪声要求,有极快的调谐速度,频温特性和频漂性能好,功率平坦度好,电磁兼容性好,振荡频率在1MHZ以下的RC压控振荡器;

2、完成其电路的仿真。

二、设计分析

压控振荡器(voltage-controlledoscillator,VCO)是一种频率随外加控制电压转变的振荡器,是频率产生源的重要部件。

在许多现代通信系统中,VCO是可调信号源,用以实现锁相环(PLL)和其他频率合成源电路的快速频率调谐。

VCO现已普遍用于电话、卫星通信终端、基站、雷达、导弹制导系统、军事通信系统、数字无线通信、光学多工器、光发射机和其他电子系统。

VCO对电子系统的性能、尺寸、重量和本钱都有决定性的影响。

相位噪声是VCO的一项关键参数。

低相位噪声的VCO将提高通信系统的频带利用率、增加数据传输系统的数据传输速度。

因此VCO对电子系统有着重要的影响。

为适应小型化、轻量化、高性能化、多功能化、低功耗化和低本钱化方面的需求,人们开发了许多工作频率高、性能优良、体积微小、价钱合理的VCO产品投放市场,形成了新的微波VCO系列。

三、设计方案

1、VCO的大体状态

VCO的进展历史

上世纪初,Armstrong发明了电子管振荡器,经Hartley改良电路设计并开发成功电子管VCO。

其振荡频率是通过改变振荡电路中电感器或电容器的参数值来进行调节。

咱们今天仍在沿用的Hartley,Colpitts,Clapp,Armstrong,Pierce等经典振荡电路结构,就是那时的研究功效。

上世纪中叶,晶体管问世并专门快取代电子管成为振荡电路的有源器件。

专门是变容二极管的应用,变容二极管的电容随外加电压的改变而转变,用变容二极管作压控器件,改变其控制电压就可实现VCO振荡频率的调节。

如此,晶体管、变容二极管和其他无源元件就组成了分立式的晶体管VCO。

它实现了振荡频率的电子调谐。

与电子管VCO相较较,晶体管VCO具有电子调谐、体积小、本钱低、功耗小、质量好、调频范围设置简便等长处。

晶体管VCO的进展必然程度上增进了电视技术在那时的迅速推行。

1960年至1980年,晶体管VCO被电子系统设计所普遍采用。

到了1980年,情形发生了转变,混合集成的VCO组件和单片集成的VCOIC出现了。

这两种新技术对VCO的进展产生了重要的影响。

VCO从此就开始步入现代VCO技术的进展时期。

变容二极管、电容器、电感器等元器件的小型化为制造VCO组件创造了条件。

虽然分立元件的晶体管VCO具有按用户要求设计工作频率和调谐范围的灵活性,但一般在生产中需要花费大量的人工对肯定频率的元件进行调试,以消除元件误差对频率的影响。

另外,分立元件VCO需要良好的屏蔽,其尺寸也比较大,已不能完全知足现代无线电子系统进展的要求。

20世纪80年代末、90年代初,移动电话迅速进展,对带封装的振荡器组件的需求也日趋增加。

这为VCO组件的进展提供了宝贵的市场机缘。

各VCO组件厂商开发了适合不同应用领域所需频率的产品。

由于表面安装元件的不断小型化(1206,0805,0603,0402和0201),新开发的VCO组件的尺寸也愈来愈小,本钱也愈来愈低。

目前,VCO组件达到了新的水平,其体积已减小到4mm×5mm×2mm,大量量供货VCO的销售单价已降至1美元左右。

VCO组件在15年中其尺寸急剧减小,知足了蜂窝电话等新型无线移动装置对小型化的要求。

20世纪90年代末期,出现了一种尺寸更小、本钱更低的单片集成VCO技术,它是一种半导体集成电路器件,其全数电路元件均集成在同一芯片上。

这种器件像VCO组件一样,是一个完整的VCO,具有封装和外引线。

首批单片集成VCO采用2英寸GaAsIC工艺和单片微波集成电路(MMIC)技术制造,是为卫星接收机和雷达系统研制的。

其工作频率高达数GHz,但本钱昂贵。

大多数初期单片GaAsVCO的研究工作都是针对军事应用展开的,很少涉及民用领域。

1990年Si-IC技术在高频化和无源元件集成方面取得重大进展,开发成功工作频率很高的晶体管、变容二极管和单片集成的高Q值电感器与高频电容器。

这为高频硅单片集成VCO的研究与开发奠定了技术基础。

人们为大量量生产本钱低、体积小、工作在800~2500MHz频段的VCO开展了大量的研究与开发工作。

1992年,美国California大学第一报导了硅单片VCOIC的研究功效。

其后,对硅单片VCOIC的研究进入繁荣期,采用不同技术方案的硅单片VCOIC相续问世。

通过不断改良,其产品已普遍应用于无绳电话、蓝牙装置、WLAN、GPS、DBS等无线装置与系统当中。

目前,单片集成VCO还不能用于对相位噪声要求很高的应用领域。

像GSM、CDMA等具有高数据速度的移动电话系统,还只能利用VCO组件。

VCO技术的现状

最近几年来,单片集成低相位噪声SiGeBiCMOS技术的进展令人注视,现已成为单片集成VCO最有前途的制造技术。

用SiGeBiCMOS技术制造的单片集成VCO具有相位噪声低等众多优良性能,可完全知足GSM、CDMA、WCDMA和无线LAN等现代无线电通信系统的要求,在无线通信系统IC芯片制造中取得普遍应用。

SiGeBiCMOS技术采用SiGeHBT作有源器件,这是它与常规SiBiCMOS技术的主要区别。

SiGeHBT是基区为SiGe应变层、发射区和集电区为硅的异质结双极晶体管,具有工作频率高、基极电阻低、击穿电压高等优良特性,其微波特性尤其突出。

SiGeHBT不仅特征频率很高,而且噪声系数很小,对设计低相位噪声VCO特别有利。

有源器件的最小噪声系数是决定VCO噪声本底电平高低的主要因素。

小频偏相位噪声主要同VCO振荡电路的加载Q值、VCO有源器件的闪烁噪声与角频率有关。

SiGeHBT的闪烁噪声小,角频率也很低。

这对降低小频偏相位噪声十分有利。

SiGeBiCMOS技术除能制造性能优良的HBT之外,还能制造优质无源元件。

这些片上集成的电感器、电容器等优质无源元件也为设计制造单片集成低相位噪声VCO创造了有利条件。

SiGeBiCMOS技术进展至今,已经形成、和三代不同水平的SiGe技术。

有三种全集成VCO业已开发成功,其芯片均采用SiGeBiCMOS生产工艺制造。

第一种是为双频带GSM和DCS系统开发的产品。

第二种是为无线LAN和无线数字电话研制的产品。

它的频率调谐范围宽,工作的电源电压范围也较广,当电源电压转变时,VCO的RF性能转变极小。

第三种VCO的工作频率为~4GHz。

这种VCO含有共射-共基差分缓冲放大器,能够向100Ω负载输出0dBm的功率。

如此大的输出功率通常可直接驱动三频带GSM接收机的混频器。

VCO技术的展望

此后,VCO技术的研究与开发工作将继续围绕VCO组件和单片集成VCO展开。

可是,全集成单片VCO技术是研究工作的重点,也是未来VCO技术的进展方向。

为了适应现代无线系统进展的要求,VCO组件不断向小型、高频、宽带、高输出化和特性多样化方向进展。

将采用新的超小型元件和更先进的薄膜技术与表面安装技术,继续推动VCO组件封装的微型化和表面安装化。

通过晶体管的改良及振荡电路的开发,解决好小型化带来的谐振器Q值降低的问题和低功耗引发的特性劣化问题。

第四代移动电话和其他工作在微波频段高端的无线系统需要VCO组件进一步提高工作频率,实现VCO组件的高频化。

开发工作频率更高的微波VCO组件是未来十分重要的研究课题。

SiGeBiCMOS等RFIC基础工艺技术正在不断进展与进步。

半导体工艺制造有源器件与无源器件将具有更好的性能。

此刻,即便用Si工艺技术,也可制得截止频率超过50GHz的晶体管和高Q值、大电容变比、低串联电阻的优质变容二极管。

这种工艺技术还具有衬底损耗低、金属化层厚、器件寄生元件少等特点。

利用这种工艺技术能够制造相位噪声低、工作频率高、工作电流小的单片集成VCO。

现代无线系统,尤其是现代无线移动通信系统,不仅要求VCO自身小型化和低本钱化,而且希望VCO能同频率合成器与收发机的其他单元电路进行单片集成,以达到减小整机体积和本钱的目的。

另外,单片集成VCO的设计理论也在深化,设计技术也愈来愈先进。

差分放大器、幅度控制、二次谐波抑止器、IC耦合变压器、复合振荡器、高频结构设计等技术正不断被纳入单片集成VCO的设计当中。

利用单片集成VCO技术把优质VCO同收发机电路集成在一路的新产品不断问世。

例如,在WLAN和蓝牙装置中,最新的收发机就把高质量的VCO同RF收发前端IC集成在一路,使其尺寸大大减小。

WLAN系统要求VCO具有很低的相位噪声。

由于RFICVCO技术的不断进展,卫星接收机、CATV机顶盒、无线数据装置、无绳电话、移动电话等商用RF系统与装置愈来愈多地采用集成化频率源。

显然,在大规模商业应用领域中,单片集成VCO占有的市场份额将不断增大,而分立元件VCO和VCO组件占有市场将慢慢减少。

单片集成VCO在大规模商用无线系统中占主导地位的时期专门快就会到来。

VCO技术已经实现了从笨重的电子管VCO电路到面积小于1mm2SiIC的跨越。

 

2、肯定VCO设计方案

能实现VCO功能的电路很多,常常利用的有分立器件组成的振荡器和集成压控振荡器。

如串联谐振电容三点式电路、压控晶体振荡器,积分-施密特电路、射级耦合多谐振荡器、变容二极管调谐LC振荡器和石英晶体振荡器等几种。

它们之间各有优缺点,下面做简要分析,并选择适合的方案。

方案一:

LC振荡器

这种振荡器有众多的集成电路存在,有与采用ECL工艺,所以最高工作频率能够达到几百兆,频率容量高,频谱纯度高,电路简单,稳固性好,调试方便。

方案二:

石英晶体振荡器

由于石英晶体的串并联谐振频率超级接近;物理化学性质稳固;接入系数小,外界对其影响小。

故又为高精度振荡器。

方案三:

RC振荡器

故要使频率增大则电阻和电容都要减小。

电阻过小时,充电时刻短;电容过小时,寄生结电容随外界转变对振荡器影响大,频率不稳固,放大器负载太大,相当于大功率放大器,不知足设计要求,故该振荡器的工作频率应小于1MHZ。

RC振荡器起振容易,频率和波形预测性好。

1、施密特触发器型压控振荡器

该类电路属于低频宽带通用的压控多谐振荡器。

其中心频率通过外接按时电容和电阻实现,电源电压范围较宽,虽然频率问电镀低,易受温度和电源电压转变的影响,最高频率只有1MHZ,但其线性度好,可控范围宽。

2、射极耦合多谐型压控振荡器

该类集成电路采用二极管做负载,

较小,采用对称结构的三极管工作在共基接法,直接耦合正反馈较强,振荡频率较高,压-频特性较好,且调整方便,输出最高频率可达155MHZ。

比较以上几种设计方案,从电路结构、调试难易度、输出特性、控制性等方面选择,明显应选施密特触发器型压控振荡器方案。

下面介绍组成施密特触发器的几种方式:

 

a)迟滞比较器:

电路图如右图所示,其中

为门坎电压,则有

故,当

=0时为上升门坎,

=1时为下降门坎

该比较器能够识别两个输入端电压极性,输出为一名逻辑值。

b)运算放大器:

 

c)两级倒相器:

一、当

高电平时,

导通,

截止;现在

二、当

低电平时,

截止,

导通;现在

本实验采用第三种两级倒相器做斯密特触发器。

四、电路设计

施密特触发器及功能模块设计

施密特触发器电压传输特性及工作特点

施密特触发器属于电平触发器件,当输入信号达到某必然电压值时,输出电压会发生突变;

电路有两个阈值电压。

输入信号增加和减少时,电路的阈值电压别离是正向阈值电压(VT+)和负阈值电压(VT-)。

 

本触发器为同相输出斯密特触发器,其逻辑电路图如下图所示:

 

施密特触发器设计步骤:

a)在自己的设计项目(project)环境下启动主界面ViewDraw,创建schematic形式的新文件;

b)从元件库中挪用元件,对于施密特触发器,只需挪用三个电阻,两个NPN,一个交流源,一个直流源,地。

将元件按逻辑电路图的顺序排好,点击右边工具栏中的net按钮,进行元件间的连线;

c)对节点添加标号,左键点击连线,在NetProperties框中设置label,如上图;

d)在完成电路图文件的设计输入后,点击检查并保留(save+check),在tools工具中的createanalognetlist产生相应的模拟网表文件,完成总的设计输入,并对各参数进行如下设置:

 

 

仿真结果:

 

 

由以上的仿真结果和理论结果比较可知,该触发器存在上下门限差1—2V之间。

 

施密特触发器模块设计:

打开画图窗口file__new,对话框当选择symbol,输入符号名称(与原电路图文件名一致),进入符号窗口,菜单命令add依次绘制符号实体、管脚、添加标注、属性(PINTYPE=INPINTYPE=OUT)、文本,执行存储命令,符号存储在根目录下,完成施密特触发器模块的设计。

如下图所示:

 

RC压控振荡器的设计

对于各类用途的RC压控振荡,设计时应考虑的指标大体上能够分为以下几个方面:

(1)压控曲线的线性度,灵敏度及压控范围。

(2)振荡频率的精度及其稳固度。

(3)振荡输出的幅频及其频谱纯度。

(4)振荡器功率及其负载能力。

设计时按照需要,选定对系统影响最大的参数作为设计要点,其它的则可彼此折衷考虑。

同施密特触发器逻辑电路图的输入步骤一致,即挪用元器件或功能部件(Place或Add命令)->布局(Move命令)->布线(Place命令)->标注(Place命令)->检查及存储,产生图形文件(SCH)(File命令)->生成网表文件(NET或WIR)

其逻辑电路如图所示:

 

产生网表文件后,选择要观察的端口,将其设置为观测点。

运行viewsim,在仿真器窗口中挪用需仿真文件;

运行仿真器,仿真窗口中运行simulation-runsimulation,观察仿真结果如下图所示:

 

由以上的仿真结果和理论结果可知,仿真结果与理论分析稍有点误差,原因在于未对输入锯齿波调XY显示轴。

五、设计总结

压控振荡器,调节电阻或电容能够改变波形发生电路的振荡频率,其输出信号的频率受输入电压线性控制。

设计振荡器这种有源器件,第一步要做的就是管子的选取,设计前必需按照自己的指标肯定管子的参数,选好所需要的管子;第二步是按照三极管的最佳噪音特性肯定直流偏置电路的偏置电阻;第三步是肯定二极管的VC特性,先由指标即设计的振荡器频率肯定电容的值,然后按照VC曲线肯定二极管两头直流电压;第四步是进行谐波仿真,分析相位噪音,生成压控曲线,观察设计的振荡器的压控线性度。

本报告从施密特触发器和压控振荡器电路的原理动身,给出了压控振荡器的仿真模型的设计,并利用Workviewoffice软件对其进行仿真。

这种设计仿真模型的长处是超级接近实际电路设计的工作进程。

仿真结果及分析表明,电路实现了其功能,并具有较好的性能。

仿真结果验证了压控振荡器的输出信号的频率受输入电压线性控制。

不起振和容易停振

所碰到问题:

(1)反馈电压极性接反。

(2)直流工作点太低。

(3)负反馈过大。

(4)变容管反向偏压不适合。

解决方式:

(1)改变反馈极性。

(2)改变偏置电路参数。

(3)适当减小负反馈。

(4)调整偏压。

注意事项:

一、单独VCO一般不单独作为本振源、载波调制源或信号源利用,因为频率稳固度差。

二、VCO与锁相环组成频率源时,必需有良好的环路设计才能取得良好的相噪和频率稳度。

3、VCO利用线性范围只占f0/VT特性一部份,对于线性有要求应用VT在2-8内选择较合理。

4、VCO调频范围宽,VT转变大,相噪相应转变也大,因此低相噪利用应选适当的频带。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2